955 resultados para 3D gravity modelling
Resumo:
Modelling how a word is activated in human memory is an important requirement for determining the probability of recall of a word in an extra-list cueing experiment. Previous research assumed a quantum-like model in which the semantic network was modelled as entangled qubits, however the level of activation was clearly being over-estimated. This paper explores three variations of this model, each of which are distinguished by a scaling factor designed to compensate the overestimation.
Resumo:
The study presented here applies the highly parameterised semi-distributed U.S. Department of Agriculture Soil and Water Assessment Tool (SWAT) to an Australian subtropical catchment. SWAT has been applied to numerous catchments worldwide and is considered to be a useful tool that is under ongoing development with contributions coming from different research groups in different parts of the world. In a preliminary run the SWAT model application for the Elimbah Creek catchment has estimated water yield for the catchment and has quantified the different sources. For the modelling period of April 1999 to September 2009 the results show that the main sources of water in Elimbah Creek are total surface runoff and lateral flow (65%). Base-flow contributes 36% to the total runoff. On a seasonal basis modelling results show a shift in the source of water contributing to Elimbah Creek from surface runoff and lateral flow during intense summer storms to base-flow conditions during dry months. Further calibration and validation of these results will confirm that SWAT provides an alternative to Australian water balance models.
Resumo:
The increasing demand for mobile video has attracted much attention from both industry and researchers. To satisfy users and to facilitate the usage of mobile video, providing optimal quality to the users is necessary. As a result, quality of experience (QoE) becomes an important focus in measuring the overall quality perceived by the end-users, from the aspects of both objective system performance and subjective experience. However, due to the complexity of user experience and diversity of resources (such as videos, networks and mobile devices), it is still challenging to develop QoE models for mobile video that can represent how user-perceived value varies with changing conditions. Previous QoE modelling research has two main limitations: aspects influencing QoE are insufficiently considered; and acceptability as the user value is seldom studied. Focusing on the QoE modelling issues, two aims are defined in this thesis: (i) investigating the key influencing factors of mobile video QoE; and (ii) establishing QoE prediction models based on the relationships between user acceptability and the influencing factors, in order to help provide optimal mobile video quality. To achieve the first goal, a comprehensive user study was conducted. It investigated the main impacts on user acceptance: video encoding parameters such as quantization parameter, spatial resolution, frame rate, and encoding bitrate; video content type; mobile device display resolution; and user profiles including gender, preference for video content, and prior viewing experience. Results from both quantitative and qualitative analysis revealed the significance of these factors, as well as how and why they influenced user acceptance of mobile video quality. Based on the results of the user study, statistical techniques were used to generate a set of QoE models that predict the subjective acceptability of mobile video quality by using a group of the measurable influencing factors, including encoding parameters and bitrate, content type, and mobile device display resolution. Applying the proposed QoE models into a mobile video delivery system, optimal decisions can be made for determining proper video coding parameters and for delivering most suitable quality to users. This would lead to consistent user experience on different mobile video content and efficient resource allocation. The findings in this research enhance the understanding of user experience in the field of mobile video, which will benefit mobile video design and research. This thesis presents a way of modelling QoE by emphasising user acceptability of mobile video quality, which provides a strong connection between technical parameters and user-desired quality. Managing QoE based on acceptability promises the potential for adapting to the resource limitations and achieving an optimal QoE in the provision of mobile video content.
Resumo:
Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.
Resumo:
An evolution in the use of digital modelling has occurred in the Queensland Department of Public Works Division of Project Services over the last 20 years from: the initial implementation of computer aided design and documentation (CADD); to experimentation with building information modelling (BIM); to embedding integrated practice (IP); to current steps towards integrated project delivery (IPD) including the active involvement of consultants and contractors in the design/delivery process. This case study is one of three undertaken through the Australian Sustainable Built Environment National Research Centre investigating past R&D investment. The intent of these cases is to inform the development of policy guidelines for future investment in the construction industry in Australia. This research is informing the activities of CIB Task Group 85 R&D Investment and Impact. The uptake of digital modelling by Project Services has been approached through an incremental learning approach. This has been driven by a strong and clear vision with a focus on developing more efficient delivery mechanisms through the use of new technology coupled with process change. Findings reveal an organisational focus on several areas including: (i) strategic decision making including the empowerment of innovation leaders and champions; (ii) the acquisition and exploitation of knowledge; (iii) product and process development (with a focus on efficiency and productivity); (iv) organisational learning; (v) maximising the use of technology; and (vi) supply chain integration. Key elements of this approach include pilot projects, researcher engagement, industry partnerships and leadership.
Resumo:
Currently there are little objective parameters that can quantify the success of one form of prostate surgical removal over another. Accordingly, at Old Dominion University (ODU) we have been developing a process resulting in the use of software algorithms to assess the coverage and depth of extra-capsular soft tissue removed with the prostate by the various surgical approaches. Parameters such as the percent of capsule that is bare of soft tissue and where present the depth and extent of coverage have been assessed. First, visualization methods and tools are developed for images of prostate slices that are provided to ODU by the Pathology Department at Eastern Virginia Medical School (EVMS). The visualization tools interpolate and present 3D models of the prostates. Measurement algorithms are then applied to determine statistics about extra-capsular tissue coverage. This paper addresses the modeling, visualization, and analysis of prostate gland tissue to aid in quantifying prostate surgery success. Particular attention is directed towards the accuracy of these measurements and is addressed in the analysis discussions.
Resumo:
Crowds of non-combatants play a large and increasingly recognized role in modern military operations, and often create substantial difficulties for the combatant forces involved. However, realistic models of crowds are essentially absent from current military simulations. To address this problem we are developing a crowd simulation capable of generating crowds of non-combatant civilians that exhibit a variety of realistic individual and group behaviours at differing levels of fidelity. The crowd simulation is interoperable with existing military simulations using a standard distributed simulation architecture. Commercial game technology is utilized in the crowd simulation to model both urban terrain and the physical behaviours of the human characters that make up the crowd. The objective of this paper is to present the process involved with the design and development of a simulation that integrates commercially available game technology with current military simulations in order to generate realistic and believable crowd behaviour.
Resumo:
Aims: This paper describes the development of a risk adjustment (RA) model predictive of individual lesion treatment failure in percutaneous coronary interventions (PCI) for use in a quality monitoring and improvement program. Methods and results: Prospectively collected data for 3972 consecutive revascularisation procedures (5601 lesions) performed between January 2003 and September 2011 were studied. Data on procedures to September 2009 (n = 3100) were used to identify factors predictive of lesion treatment failure. Factors identified included lesion risk class (p < 0.001), occlusion type (p < 0.001), patient age (p = 0.001), vessel system (p < 0.04), vessel diameter (p < 0.001), unstable angina (p = 0.003) and presence of major cardiac risk factors (p = 0.01). A Bayesian RA model was built using these factors with predictive performance of the model tested on the remaining procedures (area under the receiver operating curve: 0.765, Hosmer–Lemeshow p value: 0.11). Cumulative sum, exponentially weighted moving average and funnel plots were constructed using the RA model and subjectively evaluated. Conclusion: A RA model was developed and applied to SPC monitoring for lesion failure in a PCI database. If linked to appropriate quality improvement governance response protocols, SPC using this RA tool might improve quality control and risk management by identifying variation in performance based on a comparison of observed and expected outcomes.
Resumo:
A numerical study is presented to examine the fingering instability of a gravity-driven thin liquid film flowing down the outer wall of a vertical cylinder. The lubrication approximation is employed to derive an evolution equation for the height of the film, which is dependent on a single parameter, the dimensionless cylinder radius. This equation is identified as a special case of that which describes thin film flow down an inclined plane. Fully three-dimensional simulations of the film depict a fingering pattern at the advancing contact line. We find the number of fingers observed in our simulations to be in excellent agreement with experimental observations and a linear stability analysis reported recently by Smolka & SeGall (Phys Fluids 23, 092103 (2011)). As the radius of the cylinder decreases, the modes of perturbation have an increased growth rate, thus increasing cylinder curvature partially acts to encourage the contact line instability. In direct competition with this behaviour, a decrease in cylinder radius means that fewer fingers are able to form around the circumference of the cylinder. Indeed, for a sufficiently small radius, a transition is observed, at which point the contact line is stable to transverse perturbations of all wavenumbers. In this regime, free surface instabilities lead to the development of wave patterns in the axial direction, and the flow features become perfectly analogous to the two-dimensional flow of a thin film down an inverted plane as studied by Lin & Kondic (Phys Fluids 22, 052105 (2010)). Finally, we simulate the flow of a single drop down the outside of the cylinder. Our results show that for drops with low volume, the cylinder curvature has the effect of increasing drop speed and hence promoting the phenomenon of pearling. On the other hand, drops with much larger volume evolve to form single long rivulets with a similar shape to a finger formed in the aforementioned simulations.
Resumo:
Knowledge management (KM) continues to receive mounting interest within the construction industry due to its potential to offer solutions for organisations seeking competitive advantage. This paper presents a KM input-process-output conceptual model comprising unique and well-defined theoretical constructs representing KM practices and their internal and external determinants in the context of construction. The paper also presents the underlying principles used in operationally defining each construct using extant KM literature, and offers a number of testable hypotheses that capture the inter-relationships between the identified constructs.
Resumo:
As the world’s population is growing, so is the demand for agricultural products. However, natural nitrogen (N) fixation and phosphorus (P) availability cannot sustain the rising agricultural production, thus, the application of N and P fertilisers as additional nutrient sources is common. It is those anthropogenic activities that can contribute high amounts of organic and inorganic nutrients to both surface and groundwaters resulting in degradation of water quality and a possible reduction of aquatic life. In addition, runoff and sewage from urban and residential areas can contain high amounts of inorganic and organic nutrients which may also affect water quality. For example, blooms of the cyanobacterium Lyngbya majuscula along the coastline of southeast Queensland are an indicator of at least short term decreases of water quality. Although Australian catchments, including those with intensive forms of land use, show in general a low export of nutrients compared to North American and European catchments, certain land use practices may still have a detrimental effect on the coastal environment. Numerous studies are reported on nutrient cycling and associated processes on a catchment scale in the Northern Hemisphere. Comparable studies in Australia, in particular in subtropical regions are, however, limited and there is a paucity in the data, in particular for inorganic and organic forms of nitrogen and phosphorus; these nutrients are important limiting factors in surface waters to promote algal blooms. Therefore, the monitoring of N and P and understanding the sources and pathways of these nutrients within a catchment is important in coastal zone management. Although Australia is the driest continent, in subtropical regions such as southeast Queensland, rainfall patterns have a significant effect on runoff and thus the nutrient cycle at a catchment scale. Increasingly, these rainfall patterns are becoming variable. The monitoring of these climatic conditions and the hydrological response of agricultural catchments is therefore also important to reduce the anthropogenic effects on surface and groundwater quality. This study consists of an integrated hydrological–hydrochemical approach that assesses N and P in an environment with multiple land uses. The main aim is to determine the nutrient cycle within a representative coastal catchment in southeast Queensland, the Elimbah Creek catchment. In particular, the investigation confirms the influence associated with forestry and agriculture on N and P forms, sources, distribution and fate in the surface and groundwaters of this subtropical setting. In addition, the study determines whether N and P are subject to transport into the adjacent estuary and thus into the marine environment; also considered is the effect of local topography, soils and geology on N and P sources and distribution. The thesis is structured on four components individually reported. The first paper determines the controls of catchment settings and processes on stream water, riverbank sediment, and shallow groundwater N and P concentrations, in particular during the extended dry conditions that were encountered during the study. Temporal and spatial factors such as seasonal changes, soil character, land use and catchment morphology are considered as well as their effect on controls over distributions of N and P in surface waters and associated groundwater. A total number of 30 surface and 13 shallow groundwater sampling sites were established throughout the catchment to represent dominant soil types and the land use upstream of each sampling location. Sampling comprises five rounds and was conducted over one year between October 2008 and November 2009. Surface water and groundwater samples were analysed for all major dissolved inorganic forms of N and for total N. Phosphorus was determined in the form of dissolved reactive P (predominantly orthophosphate) and total P. In addition, extracts of stream bank sediments and soil grab samples were analysed for these N and P species. Findings show that major storm events, in particular after long periods of drought conditions, are the driving force of N cycling. This is expressed by higher inorganic N concentrations in the agricultural subcatchment compared to the forested subcatchment. Nitrate N is the dominant inorganic form of N in both the surface and groundwaters and values are significantly higher in the groundwaters. Concentrations in the surface water range from 0.03 to 0.34 mg N L..1; organic N concentrations are considerably higher (average range: 0.33 to 0.85 mg N L..1), in particular in the forested subcatchment. Average NO3-N in the groundwater has a range of 0.39 to 2.08 mg N L..1, and organic N averages between 0.07 and 0.3 mg N L..1. The stream bank sediments are dominated by organic N (range: 0.53 to 0.65 mg N L..1), and the dominant inorganic form of N is NH4-N with values ranging between 0.38 and 0.41 mg N L..1. Topography and soils, however, were not to have a significant effect on N and P concentrations in waters. Detectable phosphorus in the surface and groundwaters of the catchment is limited to several locations typically in the proximity of areas with intensive animal use; in soil and sediments, P is negligible. In the second paper, the stable isotopes of N (14N/15N) and H2O (16O/18O and 2H/H) in surface and groundwaters are used to identify sources of dissolved inorganic and organic N in these waters, and to determine their pathways within the catchment; specific emphasis is placed on the relation of forestry and agriculture. Forestry is predominantly concentrated in the northern subcatchment (Beerburrum Creek) while agriculture is mainly found in the southern subcatchment (Six Mile Creek). Results show that agriculture (horticulture, crops, grazing) is the main source of inorganic N in the surface waters of the agricultural subcatchment, and their isotopic signature shows a close link to evaporation processes that may occur during water storage in farm dams that are used for irrigation. Groundwaters are subject to denitrification processes that may result in reduced dissolved inorganic N concentrations. Soil organic matter delivers most of the inorganic N to the surface water in the forested subcatchment. Here, precipitation and subsequently runoff is the main source of the surface waters. Groundwater in this area is affected by agricultural processes. The findings also show that the catchment can attenuate the effects of anthropogenic land use on surface water quality. Riparian strips of natural remnant vegetation, commonly 50 to 100 m in width, act as buffer zones along the drainage lines in the catchment and remove inorganic N from the soil water before it enters the creek. These riparian buffer zones are common in most agricultural catchments of southeast Queensland and are indicated to reduce the impact of agriculture on stream water quality and subsequently on the estuary and marine environments. This reduction is expressed by a significant decrease in DIN concentrations from 1.6 mg N L..1 to 0.09 mg N L..1, and a decrease in the �15N signatures from upstream surface water locations downstream to the outlet of the agricultural subcatchment. Further testing is, however, necessary to confirm these processes. Most importantly, the amount of N that is transported to the adjacent estuary is shown to be negligible. The third and fourth components of the thesis use a hydrological catchment model approach to determine the water balance of the Elimbah Creek catchment. The model is then used to simulate the effects of land use on the water balance and nutrient loads of the study area. The tool that is used is the internationally widely applied Soil and Water Assessment Tool (SWAT). Knowledge about the water cycle of a catchment is imperative in nutrient studies as processes such as rainfall, surface runoff, soil infiltration and routing of water through the drainage system are the driving forces of the catchment nutrient cycle. Long-term information about discharge volumes of the creeks and rivers do, however, not exist for a number of agricultural catchments in southeast Queensland, and such information is necessary to calibrate and validate numerical models. Therefore, a two-step modelling approach was used to calibrate and validate parameters values from a near-by gauged reference catchment as starting values for the ungauged Elimbah Creek catchment. Transposing monthly calibrated and validated parameter values from the reference catchment to the ungauged catchment significantly improved model performance showing that the hydrological model of the catchment of interest is a strong predictor of the water water balance. The model efficiency coefficient EF shows that 94% of the simulated discharge matches the observed flow whereas only 54% of the observed streamflow was simulated by the SWAT model prior to using the validated values from the reference catchment. In addition, the hydrological model confirmed that total surface runoff contributes the majority of flow to the surface water in the catchment (65%). Only a small proportion of the water in the creek is contributed by total base-flow (35%). This finding supports the results of the stable isotopes 16O/18O and 2H/H, which show the main source of water in the creeks is either from local precipitation or irrigation waters delivered by surface runoff; a contribution from the groundwater (baseflow) to the creeks could not be identified using 16O/18O and 2H/H. In addition, the SWAT model calculated that around 68% of the rainfall occurring in the catchment is lost through evapotranspiration reflecting the prevailing long-term drought conditions that were observed prior and during the study. Stream discharge from the forested subcatchment was an order of magnitude lower than discharge from the agricultural Six Mile Creek subcatchment. A change in land use from forestry to agriculture did not significantly change the catchment water balance, however, nutrient loads increased considerably. Conversely, a simulated change from agriculture to forestry resulted in a significant decrease of nitrogen loads. The findings of the thesis and the approach used are shown to be of value to catchment water quality monitoring on a wider scale, in particular the implications of mixed land use on nutrient forms, distributions and concentrations. The study confirms that in the tropics and subtropics the water balance is affected by extended dry periods and seasonal rainfall with intensive storm events. In particular, the comprehensive data set of inorganic and organic N and P forms in the surface and groundwaters of this subtropical setting acquired during the one year sampling program may be used in similar catchment hydrological studies where these detailed information is missing. Also, the study concludes that riparian buffer zones along the catchment drainage system attenuate the transport of nitrogen from agricultural sources in the surface water. Concentrations of N decreased from upstream to downstream locations and were negligible at the outlet of the catchment.
Resumo:
We present a rigorous validation of the analytical Amadei solution for the stress concentration around an arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients b11 and b55 are not equal. It is shown from theoretical considerations and published experimental data that the b11 and b55 are not equal for realistic rocks. Second, we develop a 3D finite element elastic model within a hybrid analytical–numerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic, transverse isotropic and orthorhombic symmetries. It is concluded that the analytical Amadei solution is valid with no restriction on the borehole orientation or the symmetry of the elastic anisotropy.
Resumo:
The building sector is the dominant consumer of energy and therefore a major contributor to anthropomorphic climate change. The rapid generation of photorealistic, 3D environment models with incorporated surface temperature data has the potential to improve thermographic monitoring of building energy efficiency. In pursuit of this goal, we propose a system which combines a range sensor with a thermal-infrared camera. Our proposed system can generate dense 3D models of environments with both appearance and temperature information, and is the first such system to be developed using a low-cost RGB-D camera. The proposed pipeline processes depth maps successively, forming an ongoing pose estimate of the depth camera and optimizing a voxel occupancy map. Voxels are assigned 4 channels representing estimates of their true RGB and thermal-infrared intensity values. Poses corresponding to each RGB and thermal-infrared image are estimated through a combination of timestamp-based interpolation and a pre-determined knowledge of the extrinsic calibration of the system. Raycasting is then used to color the voxels to represent both visual appearance using RGB, and an estimate of the surface temperature. The output of the system is a dense 3D model which can simultaneously represent both RGB and thermal-infrared data using one of two alternative representation schemes. Experimental results demonstrate that the system is capable of accurately mapping difficult environments, even in complete darkness.
Resumo:
Parametric and generative modelling methods are ways in which computer models are made more flexible, and of formalising domain-specific knowledge. At present, no open standard exists for the interchange of parametric and generative information. The Industry Foundation Classes (IFC) which are an open standard for interoperability in building information models is presented as the base for an open standard in parametric modelling. The advantage of allowing parametric and generative representations are that the early design process can allow for more iteration and changes can be implemented quicker than with traditional models. This paper begins with a formal definition of what constitutes to be parametric and generative modelling methods and then proceeds to describe an open standard in which the interchange of components could be implemented. As an illustrative example of generative design, Frazer’s ‘Reptiles’ project from 1968 is reinterpreted.
Resumo:
AR process modelling movie presented at Gartner BPM Summit in Sydney, August, 2011.