977 resultados para 320705 Sensory Systems
Resumo:
Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.
Resumo:
The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.
Resumo:
Fire safety of buildings has been recognised as very important by the building industry and the community at large. Traditionally, increased fire rating is provided by simply adding more plasterboards to light gauge steel frame (LSF) walls, which is inefficient. Many research studies have been undertaken to investigate the thermal behaviour of traditional LSF stud wall systems under standard fire conditions. However, no research has been undertaken on the thermal behaviour of LSF stud walls using the recently proposed composite panel. Extensive fire testing of both non-load bearing and load bearing wall panels was conducted in this research based on the standard time-temperature curve in AS1530.4. Three groups of LSF wall specimens were tested with no insulation, cavity insulation and the new composite panel based on an external insulation layer between plasterboards. This paper presents the details of this experimental study into the thermal performance of non-load bearing walls lined with various configurations of plasterboard and insulation. Extensive descriptive and numerical results of the tested non-load bearing wall panels given in this paper provide a thorough understanding of their thermal behaviour, and valuable time-temperature data that can be used to validate numerical models. Test results showed that the innovative composite stud wall systems outperformed the traditional stud wall systems in terms of their thermal performance, giving a much higher fire rating.
Resumo:
This paper considers the conditions that are necessary at system and local levels for teacher assessment to be valid, reliable and rigorous. With sustainable assessment cultures as a goal, the paper examines how education systems can support local level efforts for quality learning and dependable teacher assessment. This is achieved through discussion of relevant research and consideration of a case study involving an evaluation of a cross-sectoral approach to promoting confidence in school-based assessment in Queensland, Australia. Building on the reported case study, essential characteristics for developing sustainable assessment cultures are presented, including: leadership in learning; alignment of curriculum, pedagogy and assessment; the design of quality assessment tasks and accompanying standards, and evidence-based judgement and moderation. Taken together, these elements constitute a new framework for building assessment capabilities and promoting quality assurance.
Resumo:
There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX.
Resumo:
The available wind power is stochastic and requires appropriate tools in the OPF model for economic and reliable power system operation. This paper exhibit the OPF formulation with factors involved in the intermittency of wind power. Weibull distribution is adopted to find the stochastic wind speed and power distribution. The reserve requirement is evaluated based on the wind distribution and risk of under/over estimation of the wind power. In addition, the Wind Energy Conversion System (WECS) is represented by Doubly Fed Induction Generator (DFIG) based wind farms. The reactive power capability for DFIG based wind farm is also analyzed. The study is performed on IEEE-30 bus system with wind farm located at different buses and with different wind profiles. Also the reactive power capacity to be installed in the wind farm to maintain a satisfactory voltage profile under the various wind flow scenario is demonstrated.
Resumo:
Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's "cognitive map", or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and - we conjecture - necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on their implications and significance for the design, analysis and interpretation of experiments.
Resumo:
Clinical information systems have become important tools in contemporary clinical patient care. However, there is a question of whether the current clinical information systems are able to effectively support clinicians in decision making processes. We conducted a survey to identify some of the decision making issues related to the use of existing clinical information systems. The survey was conducted among the end users of the cardiac surgery unit, quality and safety unit, intensive care unit and clinical costing unit at The Prince Charles Hospital (TPCH). Based on the survey results and reviewed literature, it was identified that support from the current information systems for decision-making is limited. Also, survey results showed that the majority of respondents considered lack in data integration to be one of the major issues followed by other issues such as limited access to various databases, lack of time and lack in efficient reporting and analysis tools. Furthermore, respondents pointed out that data quality is an issue and the three major data quality issues being faced are lack of data completeness, lack in consistency and lack in data accuracy. Conclusion: Current clinical information systems support for the decision-making processes in Cardiac Surgery in this institution is limited and this could be addressed by integrating isolated clinical information systems.
Resumo:
In urban residential environments in Australia and other developed countries, Internet access is on the verge of becoming a ubiquitous utility like gas or electricity. From an urban sociology and community informatics perspective, this article discusses new emerging social formations of urban residents that are based on networked individualism and the potential of Internet-based systems to support them. It proposes that one of the main reasons for the disappearance or nonexistence of urban residential communities is a lack of appropriate opportunities and instruments to encourage and support local interaction in urban neighborhoods. The article challenges the view that a mere reappropriation of applications used to support dispersed virtual communities is adequate to meet the place and proximity-based design requirements that community networks in urban neighborhoods pose. It argues that the key factors influencing the successful design and uptake of interactive systems to support social networks in urban neighborhoods include the swarming social behavior of urban dwellers; the dynamics of their existing communicative ecology; and the serendipitous, voluntary, and place-based quality of interaction between residents on the basis of choice, like-mindedness, mutual interest and support needs. Drawing on an analysis of these factors, the conceptual design framework of a prototype system — the urban tribe incubator — is presented.
Resumo:
In recent times, higher education institutions have paid increasing attention to the views of students to obtain feedback on their experience of learning and teaching through internal surveys. This article reviews research in the field and reports on practices in other Australian universities. Findings demonstrate that while student feedback is valued and used by all Australian universities, survey practices are idiosyncratic and in the majority of cases, questionnaires lack validity and reliability; data are used inadequately or inappropriately; and they offer limited potential for cross-sector benchmarking. The study confirms the need for institutions to develop an overarching framework for evaluation in which a valid, reliable, multidimensional and useful student feedback survey constitutes just one part. Given external expectations and internal requirements to collect feedback from students on their experience of learning and teaching, the pursuit of sound evaluation practices will continue to be of interest at local, national and international levels.
Resumo:
Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.
Resumo:
Railway level crossings present an arguably unique interface between two transport systems that differ markedly in their performance characteristics, their degrees of regulation and their safety cultures. Railway level crossings also differ dramatically in the importance they represent as safety issues for the two modes. For rail, they are the location of a large proportion of fatalities within the system and are therefore the focus of much safety concern. For the road system, they comprise only a few percent of all fatalities, although the potential for catastrophic outcomes exist. Rail operators and regulators have traditionally required technologies to be failsafe and to demonstrate high levels of reliability. The resultant level of complexity and cost has both limited their extent of application and led to a need to better understand how motorists comprehend and respond to these systems.
Resumo:
Diabetic foot ulcers are one of the most hospitalised diabetes complications and contribute to many leg amputations. Trained diabetic foot teams and specialists managing diabetic foot ulcers have demonstrated reductions in amputations and hospitalisation by up to 90%. Few such teams exist in Australia. Thus, access is limited for all geographical populations and may somewhat explain the high rates of hospitalisation. Aim: This pilot study aims to analyse if local clinicians managing diabetic foot complications report improved access to diabetic foot specialists and outcomes with the introduction of a telehealth store-and-forward system. Method: A store-and-forward telehealth system was implemented in six different Queensland locations between August 2009 and February 2010. Sites were offered ad hoc and/or fortnightly telehealth access to a diabetic foot speciality service. A survey was sent six months following commencement of the trial to the 14 eligible clinicians involved in the trial to gauge clinical perception of the telehealth system. Results: Eight participants returned the surveys. The majority of responding clinicians reported that the telehealth system was easy to use (100%), improved their access to diabetic foot speciality services (75%), improved upskilling of local diabetes service staff (100%), and improved patient outcomes (100%). Conclusion: This pilot study suggests that clinicians found the use of a telehealth store-and-forward system very useful in improving access to speciality services, clinical skills and patient outcomes. This study supports the recommendation that telehealth systems should be made available for diabetic foot ulcer management.
Resumo:
This paper studies time integration methods for large stiff systems of ordinary differential equations (ODEs) of the form u'(t) = g(u(t)). For such problems, implicit methods generally outperform explicit methods, since the time step is usually less restricted by stability constraints. Recently, however, explicit so-called exponential integrators have become popular for stiff problems due to their favourable stability properties. These methods use matrix-vector products involving exponential-like functions of the Jacobian matrix, which can be approximated using Krylov subspace methods that require only matrix-vector products with the Jacobian. In this paper, we implement exponential integrators of second, third and fourth order and demonstrate that they are competitive with well-established approaches based on the backward differentiation formulas and a preconditioned Newton-Krylov solution strategy.