947 resultados para 3-DIMENSIONAL INSTABILITIES
Resumo:
The retaining screw of the implant-supported dental prosthesis is the weakest point of the crown/implant system. Furthermore, crown height is another important factor that may increase the lever arm. Therefore, the aim of this study was to assess the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis. Three models were created with implants (3.75 mm × 10 mm) and crowns (heights of 10, 12.5 and 15 mm). The results were visualised by means of von Mises stress maps that increased the crown heights. The screw structure exhibited higher levels of stresses in the oblique load. The oblique loading resulted in higher stress concentration when compared with the axial loading. It is concluded that the increase of the crown was damaging to the stress distribution on the screw, mainly in oblique loading. © 2013 Taylor & Francis.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabalho apresenta um estudo teórico sobre novos circuladores compactos com 3-portas tipos W e Y, baseados em cristais fotônicos bidimensionais. No circulador tipo Y, os guias de onda que o compõem formam ângulos de 120° entre si (com formato assemelhado ao da letra Y). O circulador tipo W é uma modificação do tipo Y, obtido a partir do reposicionamento de uma das portas entre as outras duas com um ângulo de 60° entre os guias de onda (com formato assemelhado ao da letra W). Os parâmetros geométricos dos cristais foram obtidos dos diagramas de bandas proibidas. O circulador de três portas tipo Y, projetado para operar em frequências de micro-ondas, foi investigado com o objetivo de gerar um protótipo inédito, enquanto que o tipo W, para frequências ópticas, foi investigado para demonstrar a possibilidade de desenvolver um circulador mais compacto em comparação com o tipo Y conhecido. O tipo W pode ser também uma alternativa geométrica mais adequada no design de circuitos integrados. Os modelos são bons no sentido em que possuem elevada isolação (maior que -20 dB em ambos os circuladores) e baixa perda de inserção (maior que -0,5 dB no caso do circulador tipo Y). O circulador tipo W apresenta uma largura de banda de operação em torno de 100 GHz para um nível de -20 dB de isolação, centrado no comprimento de onda de 1,5um. As simulações foram feitas utilizando-se o software comercial COMSOL Multiphysics, o qual se baseia no método dos elementos finitos.
Resumo:
O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa na solução de problemas de modelagem e imageamento sísmicos. Nesta Tese, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB). As principais características que diferenciam a migração KGB, durante a realização do primeiro empilhamento, de outros métodos de migração que também utilizam a teoria dos Feixes Gaussianos, são o uso da primeira zona de Fresnel projetada para limitar a largura do feixe e a utilização, no empilhamento do feixe, de uma aproximação de segunda ordem do tempo de trânsito de reflexão. Como exemplos são apresentadas aplicações a dados sintéticos para modelos bidimensionais (2-D) e tridimensionais (3-D), correspondentes aos modelos Marmousi e domo de sal da SEG/EAGE, respectivamente.
Resumo:
Dentre os métodos geofísicos, o da Eletrorresistividade é um dos mais tradicionais, com o seu desenvolvimento ocorrido há mais de 80 anos. Durante esse tempo o seu uso acompanhou o avanço no poder de processamento numérico e mais recentemente, a modelagem e inversão tridimensional tornou-se uma possibilidade para o geofísico. Apresentamos, neste trabalho, a técnica de elementos finitos aplicada ao método da eletrorresistividade 3-D, através do cálculo do potencial secundário. Para o desenvolvimento da metodologia, simulamos o levantamento do método da eletrorresistividade 3-D com os arranjos Dipolo-Dipolo e Schlumberger, visando medir as variações laterais e verticais da resistividade aparente do solo. Estes arranjos consistem na injeção de corrente elétrica na superfície e de medidas de diferenças de potencial elétrico, resultante da interação da corrente elétrica com o solo. Sendo que, as fontes e receptores são localizados de acordo com os arranjos escolhidos para o levantamento. Neste trabalho, as curvas de sondagem e as pseudo-secções de resistividade aparente, são obtidas através da modelagem de eletrorresistividade 3-D, usando malha de elementos finitos regular. Para efeito de validação, os resultados são comparados com a resposta 3-D obtida a partir dos potenciais totais.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.
Resumo:
Free surface flows in inclined channels can develop periodic instabilities that are propagated downstream as shock waves with well-defined wavelengths and amplitudes. Such disturbances are called roll waves and are common in channels, torrential lava, landslides, and avalanches. The prediction and detection of such waves over certain types of structures and environments are useful for the prevention of natural risks. In this work, a mathematical model is established using a theoretical approach based on Cauchy's equations with the Herschel-Bulkley rheological model inserted into the viscous part of the stress tensor. This arrangement can adequately represent the behavior of muddy fluids, such as water-clay mixture. Then, taking into account the shallow water and the Rankine-Hugoniot's (shock wave) conditions, the equation of the roll wave and its properties, profile, and propagation velocity are determined. A linear stability analysis is performed with an emphasis on determining the condition that allows the generation of such instabilities, which depends on the minimum Froude number. A sensitivity analysis on the numerical parameters is performed, and numerical results including the influence of the Froude number, the index flow and dimensionless yield stress on the amplitude, the wavelength of roll waves and the propagation velocity of roll waves are shown. We show that our numerical results were in agreement with Coussot's experimental results (1994).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)