982 resultados para 1B
Resumo:
Iryanthera paraensis e I. tricornis (Myristicaceae) contêm na madeira de seus troncos 1-(2', 4' - dihidroxifenil) -3- (4", 5"-metilenodoxi-2" -metoxifenil) -propano (1a 1-(2', 4' dihidroxifenil) -3-(3", 4" -metilenodioxifenil)-propano (1b) e 1-(4' -hidroxi -2'-metoxifenil) -3-(4"-hidroxi-3"-metoxifenil) -propano (1c). Apenas da primeira espécie se isolou adicionalmente 1-(2', 4'-dihidroxi-3' -metilfenil)-3-(4", 5"-metilenodioxi-2"- metoxifenil) -propano (1d) e 1-(2'-hidroxi-4'metoxifenil) -3-(3", 4"-metilenodioxifenil) -propano (1e). Dados espectroscópicos para a substância 1b, são descritos pela primeira vez.
Resumo:
[Excerpt] The incidence of fungal infections has greatly increased in patients under sustained immunosuppression with considerable risk associated. Difficulties regarding prompt diagnosis and the limited therapeutic options dictate high mortality rates. Available antifungals display substantial toxicity, a predictable consequence of the cellular structure of the organisms involved, reduced spectrum of activity, and drug interactions. Our group had previously identified three (Z)-5-amino-N'-aryl-1-methyl-1H-imidazole-4-carbohydrazonamides 1 [aryl= phenyl (1a), 4-fluorophenyl (1b), 3fluorophenyl (1c)] as potent antifungal agents.1 (...)
Resumo:
Radical cyclization continues to be a central methodology for the preparation of natural products containing heterocyclic rings. Hence, some electrochemical results obtained by cyclic voltammetry and controlled-potential electrolysis in the study of electroreductive intramolecular cyclization of ethyl (2S, 3R)-2-bromo-3-propargyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy) propanoate (1a), 2-bromo-3-allyloxy-3-(2’,3’,4’,6’-tetra-O-acetyl-beta-D-glucopyranosyloxy)propanoate (1b), 2-bromo-[1-(prop-2-yn-1-yloxy)propyl]benzene (1c) and [1-bromo-2-methoxy-2-(prop-2’-yn-1-yloxy)ethyl]benzene (1d) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)]+, electrogenerated at glassy carbon cathodes in ethanol and ethanol:water mixtures containing tetraalkylammonium salts, are presented. During controlled-potential electrolyses of solutions containing [Ni(tmc)]2+ and bromoalkoxylated compounds (1) catalytic reduction of the latter proceeds via one-electron cleavage of the carbon–bromine bond to form a radical intermediate that undergoes cyclization to afford the substituted tetrahydrofurans.
Resumo:
OBJETIVO: Avaliar o efeito do tabagismo sobre o comportamento da pressão arterial durante 24 horas, mediante análise dos parâmetros da monitorização ambulatorial da pressão arterial (MAPA). MÉTODOS: Foram estudados 289 exames de MAPA de pacientes classificados como fumantes ou não-fumantes. Os parâmetros analisados foram: médias pressóricas sistólica e diastólica durante 24 horas, na vigília e no sono, descenso noturno sistólico e diastólico e cargas pressóricas. De acordo com o uso ou não de medicação anti-hipertensiva, foram subdivididos em quatro grupos: 1A - com medicação, não-tabagistas; 1B - com medicação, tabagistas; 2A - sem medicação, não-tabagistas; e 2B - sem medicação, tabagistas. Foram descritas as variáveis por valores mínimo, máximo, mediana, média e desvio-padrão e foi feita a análise univariada, com comparação dos grupos de fumantes e não-fumantes. A análise multivariada selecionou as variáveis significativamente diferentes entre os grupos e o nível de significância adotado foi de 5%. RESULTADOS: As médias pressóricas sistólica e diastólica na vigília foram significativamente mais elevadas nos tabagistas, que usavam ou não medicação anti-hipertensiva. As médias pressóricas noturnas foram semelhantes entre tabagistas e não-tabagistas. As médias pressóricas sistólicas nas 24 horas foram significativamente mais elevadas nos tabagistas em uso ou não de medicação. O descenso noturno não diferiu entre os grupos. As cargas pressóricas foram significativamente mais elevadas nos tabagistas em todos os períodos, independentemente do uso de medicação. CONCLUSÃO: Tabagistas apresentam, durante a vigília, médias pressóricas, sistólicas e diastólicas maiores que os não-tabagistas, independentemente do uso de medicação anti-hipertensiva. Não há diferença no descenso noturno entre tabagistas e não-tabagistas.
Resumo:
Los experimentos del presente proyecto de investigación tienen como objetivo general explorar los mecanismos celulares y moleculares involucrados en la morfogénesis neuronal sobre la base de la hipótesis de que existe una relación fundamental (interacción estructural y funcional) y bidireccional entre señales ambientales (moléculas de la matriz extracelular y neuritrofinas) y elementos del citoesqueleto (microtubulos y microfilamentos), que es esencial para promover y regular el desarrollo diferencial de axones y dentritas. De acuerdo a esto nos proponemos: 1. Analizar el patrón de expresión, distribución y función de proteínas microtubulares no-motoras (MAP-la, MAP-1b) y moléculas relacionadas a ezrinas en neuronas en desarrollo. 2. Identificar y caracterizar estructural y funcionalmente proteínas microtubulares motoras relacionadas a kinesina en neuronas en desarrollo y maduras de sistema nervioso central. 3. Determinar la distribución intracelular y función de receptores para neurotrofinas y moléculas de la matriz extracelular capaces de promover el crecimiento neurítico y el desarrollo de polaridad neuronal.
Resumo:
Bd. 3. Abt. 1b. Sup.
Resumo:
A correta classificação do diabete melito (DM) permite o tratamento mais adequado e compreende quatro categorias: DM tipo 1; DM tipo 2; Outros tipos e Diabete Gestacional. Em alguns casos, pode ocorrer sobreposição de quadros, principalmente no DM que inicia no adulto jovem ou que se apresenta inicialmente com cetoacidose, intermediários ao DM 1 e DM 2. Assim, acréscimos ao sistema de classificação clássico têm sido propostos, avaliando a presença de autoimunidade (anticorpos) e a função de célula β (peptídeo-C) para definir mais precisamente os subtipos. O objetivo desta revisão foi de analisar o desempenho desses índices diagnósticos para a classificação do DM e descrever os subtipos em detalhe. Os anticorpos contra o pâncreas evidenciam a autoimunidade, sendo o anticorpo contra insulina o mais acurado antes dos 5 anos de idade e o anti-descarboxilase do ácido glutâmico para início da doença acima dos 20 anos, é esse o teste que permanece positivo por mais tempo. Já a medida do peptídeo-C avalia a reserva pancreática de insulina, e os métodos de estímulo mais usados são a medida após refeição ou após glucagon endovenoso. Valores de peptídeo-C < 1,5 ng/ml definem o paciente com função pancreática ausente, e acima desse valor, com função preservada. Combinando-se a presença de anticorpos (A+) dirigidos ao pâncreas e a sua capacidade secretória de insulina (β+), pode-se subdividir a classificação do DM em tipo 1A (A+β-) e 1B (A+ β-); e o DM tipo 2 em subgrupos de DM 2A (A+β+) e DM 2B (A-β+), o que permite uma classificação e tratamento mais precisos, além de abrir os horizontes para o entendimento da patogênese do DM.
Resumo:
pt.9:Bd.2:Abt.1B (1868)
Resumo:
Bd. 4. Abt. 1b.
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C → T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C → T and 2850C → T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials.
Resumo:
OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation (1) indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost) or clearly do not. Weak recommendations (2) indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for postoperative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B), targeting a blood glucose < 150 mg/dL after initial stabilization (2C); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); and a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSIONS: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
Resumo:
Microtubule-associated protein 1b, also named MAP5 and MAP1x, is essential for neuronal differentiation. In kitten cerebellum, this protein is partially phosphorylated. During early postnatal development, a phosphorylated form was localized prominently in growing parallel fibres and in mitotic spindles of neuroblasts in the germinal layer, whereas a non-phosphorylated MAP1b form was found in dendrites, perikarya and axons. The MAP1x epitope showed the same immunohistochemical distribution, as seen for phosphorylated MAP1b, while its recognition on immunoblots was independent of phosphorylation. It is concluded that post-translational modifications and conformation of MAP1b influence the immunological detection of MAP1b, and are essential in the neuronal growth processes and mitosis. The antibody against the phosphorylated MAP1b may represent a good marker to identify dividing neurones.
Resumo:
This work compares the structural/dynamics features of the wild-type alb-adrenergic receptor (AR) with those of the D142A active mutant and the agonist-bound state. The two active receptor forms were compared in their isolated states as well as in their ability to form homodimers and to recognize the G alpha q beta 1 gamma 2 heterotrimer. The analysis of the isolated structures revealed that, although the mutation- and agonist-induced active states of the alpha 1b-AR are different, they, however, share several structural peculiarities including (a) the release of some constraining interactions found in the wild-type receptor and (b) the opening of a cytosolic crevice formed by the second and third intracellular loops and the cytosolic extensions of helices 5 and 6. Accordingly, also their tendency to form homodimers shows commonalties and differences. In fact, in both the active receptor forms, helix 6 plays a crucial role in mediating homodimerization. However, the homodimeric models result from different interhelical assemblies. On the same line of evidence, in both of the active receptor forms, the cytosolic opened crevice recognizes similar domains on the G protein. However, the docking solutions are differently populated and the receptor-G protein preorientation models suggest that the final complexes should be characterized by different interaction patterns.
Resumo:
BACKGROUND: The aim of this study was to assess, at the European level and using digital technology, the inter-pathologist reproducibility of the ISHLT 2004 system and to compare it with the 1990 system We also assessed the reproducibility of the morphologic criteria for diagnosis of antibody-mediated rejection detailed in the 2004 grading system. METHODS: The hematoxylin-eosin-stained sections of 20 sets of endomyocardial biopsies were pre-selected and graded by two pathologists (A.A. and M.B.) and digitized using a telepathology digital pathology system (Aperio ImageScope System; for details refer to http://aperio.com/). Their diagnoses were considered the index diagnoses, which covered all grades of acute cellular rejection (ACR), early ischemic lesions, Quilty lesions, late ischemic lesions and (in the 2005 system) antibody-mediated rejection (AMR). Eighteen pathologists from 16 heart transplant centers in 7 European countries participated in the study. Inter-observer reproducibility was assessed using Fleiss's kappa and Krippendorff's alpha statistics. RESULTS: The combined kappa value of all grades diagnosed by all 18 pathologists was 0.31 for the 1990 grading system and 0.39 for the 2005 grading system, with alpha statistics at 0.57 and 0.55, respectively. Kappa values by grade for 1990/2005, respectively, were: 0 = 0.52/0.51; 1A/1R = 0.24/0.36; 1B = 0.15; 2 = 0.13; 3A/2R = 0.29/0.29; 3B/3R = 0.13/0.23; and 4 = 0.18. For the 2 cases of AMR, 6 of 18 pathologists correctly suspected AMR on the hematoxylin-eosin slides, whereas, in each of 17 of the 18 AMR-negative cases a small percentage of pathologists (range 5% to 33%) overinterpreted the findings as suggestive for AMR. CONCLUSIONS: Reproducibility studies of cardiac biopsies by pathologists in different centers at the international level were feasible using digitized slides rather than conventional histology glass slides. There was a small improvement in interobserver agreement between pathologists of different European centers when moving from the 1990 ISHLT classification to the "new" 2005 ISHLT classification. Morphologic suspicion of AMR in the 2004 system on hematoxylin-eosin-stained slides only was poor, highlighting the need for better standardization of morphologic criteria for AMR. Ongoing educational programs are needed to ensure standardization of diagnosis of both acute cellular and antibody-mediated rejection.