914 resultados para 110106 Medical Biochemistry: Proteins and Peptides (incl. Medical Proteomics)
Resumo:
Alpha helices are key structural components of proteins and important recognition motifs in biology. New techniques for stabilizing short peptide helices could be valuable for studying protein folding, modeling proteins, creating artificial proteins, and may aid the design of inhibitors or mimics of protein function. We previously reported* that 5-15 residue peptides, corresponding to the Zn-binding domain of thermolysin, react with [Pd(en)(ONO,),]in DMF-d’ and 90% H,O 10% DzO to form a 22-membered [Pd(en)(H*ELTH*)]2+ macrocycle that is helical in solution and acts as a template in nucleating helicity in both Cand N- terminal directions within the longer sequences in DMF. ~f~~&g7$$& d&qx~m ~. y AC&q& In water, however, there was less a-helicity observed, testifying to #..q,& &$--Lb &l-- &.$;,J~p?:~~q&~+~~ ’ w w the difficulty of fixing intramolecular amide NH...OC H-bonds in 6,“;;” ( k.$ U”C.a , p d$. competition with the H-bond donor solvent water. To expand the utility of [Pd(en)(H*XXXH*)]*+ as a helix- @r4”8 & oJ#:& &G& @-qd ,‘d@-gyp promoting module in solution, we now report the result that Ac- ‘$4: %$yyy + H*ELTH*H*VTDH*-NH,(l), AC-H*ELTH*AVTDYH*ELTH*- NH, (2) and AC-H*AAAH*H*ELTH*H*VTDH*-NH* (3) react with multiple equivalents of [Pd(en)(ONO,),] to produce exclusively 4-6 respectively in both DMF-d7 and water (90% Hz0 10% D,O). Mass spectrometry, 15N- and 2D ‘H- NMR spectroscopy, and CD spectra were used to characterise the structures 4-6, and their three dimensional structures were calculated from NOE restraints using simulated annealing protocols. Results demonstrate (a) selective coordination of metal ions at (i, i+4) histidine positions in water and DMF, (b) incorporation of 2 and 3 a turn-mimicking modules [Pd(en)(HELTH)]2+ in lo-15 residue peptides, and (c) facile conversion of unstructured peptides into 3- and 4- turn helices of macrocycles, with well defined a-helicity throughout and more structure in DMF than in water.
Resumo:
AIMS Hyperinsulinism of infancy (HI) is characterized by unregulated insulin secretion in the presence of hypoglycaemia, often resulting in brain damage. Pancreatic resection for control of hypoglycaemia is frequently resisted because of the risk of diabetes mellitus (DM). We investigated retrospectively 62 children with HI from nine Australian treatment centres born between 1972 and 1998, comparing endocrine and neurological outcome in 28 patients receiving medical therapy alone with 34 who required pancreatic resection to control their hypoglycaemia. METHODS History, treatment and clinical course were ascertained from file audit and interview. Risk of DM (hazard ratio) attributable to age at surgery (< vs. greater than or equal to 100 days at last pancreatectomy) and extent of resection (< vs. greater than or equal to 95%) were calculated using Cox proportional hazards regression and categorical variables compared by the chi(2) -test. Neurological outcome (normal, mild deficit or severe deficit) was derived from the most authoritative source. RESULTS Surgically treated patients had a greater birthweight, earlier presentation and higher plasma insulin levels. Of 18 infants < 100 days and 16 greater than or equal to 100 days of age at surgery, four (all greater than or equal to 100 days) became diabetic as an immediate consequence of surgery and five (two < 100 days and three greater than or equal to 100 days) became diabetic 7-18 years later. Surgery greater than or equal to 100 days and pancreatectomy greater than or equal to 95% were associated with development of diabetes (HR = 12.61, CI 1.53-104.07 and HR = 7.03, CI 1.43-34.58, respectively). Neurodevelopmental outcome was no different between the surgical and medical groups with 44% overall with neurological deficits. Patients euglycaemic within 35 days of the first symptom of hypoglycaemia (Group A) had a better neurodevelopmental outcome than those still hypoglycaemic > 35 days from first presentation (Group B) (P = 0.007). Prolonged hypoglycaemia in Group B was due either to delayed diagnosis or to need for repeat surgery because of continued hypoglycaemia. Within Group A, medically treated patients (who presented later with apparently milder disease) had a higher incidence of neurodevelopmental deficit (n = 15, four mild, three severe deficit) compared with surgically treated patients (n = 18, two mild, none severe deficit) (P < 0.025). CONCLUSIONS Poor neurodevelopmental outcome remains a major problem in hyperinsulinism of infancy. Risk of diabetes mellitus with pancreatectomy varies according to age at surgery and extent of resection. Patients presenting early with severe disease have a better neurodevelopmental outcome and lower risk of diabetes if they are treated with early extensive surgery.
Resumo:
Forty-five years as a doctor with diabetes has given Alan Stocks personal insight into how to manage life and practice when living with a chronic illness. Diabetes has proved beneficial to his career, rather than a disadvantage.
Resumo:
The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.
Resumo:
The crystal structure of the extracellular domain of growth hormone receptor complexed to its ligand, growth hormone, has been known since 1992. However, no information exists for the unliganded form of the receptor. The human growth hormone receptor's extracellular ligand-binding domain, encompassing amino-acid residues 1 - 238, has been expressed in Escherichia coli, purified by anion ion-exchange chromatography and crystallized in its unliganded state by the hanging-drop vapour-diffusion method in 100 mM HEPES pH 7.0 containing 27.5%(w/v) PEG 5000 monomethyl ether and 200 mM ammonium sulfate as the co-precipitants. The crystals belong to the othorhombic space group C222(1), have unit-cell parameters a = 99.7, b = 112.2, c = 93.2 Angstrom and diffract to 2.5 Angstrom resolution using synchrotron radiation. The crystal structure will shed light on the nature of any conformation changes that occur upon ligand binding and will provide information to develop potential low-molecular-weight agonists/antagonists to treat clinical diseases in which the growth hormone receptor is implicated.
Resumo:
West Nile Virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection causes severe neurological disease and fatalities in both human and animal hosts. The West Nile viral protease (NS2B-NS3) is essential for post-translational processing in host-infected cells of a viral polypeptide precursor into structural and functional viral proteins, and its inhibition could represent a potential treatment for viral infections. This article describes the design, expression, and enzymatic characterization of a catalytically active recombinant WNV protease, consisting of a 40-residue component of cofactor NS2B tethered via a noncleavable nonapeptide (G(4)SG(4)) to the N-terminal 184 residues of NS3. A chromogenic assay using synthetic para-nitroanilide (pNA) hexapeptide substrates was used to identify optimal enzyme-processing conditions (pH 9.5, I < 0.1 M, 30% glycerol, 1 mM CHAPS), preferred substrate cleavage sites, and the first competitive inhibitor (Ac-FASGKR- H, IC50 &SIM; 1 μM). A putative three-dimensional structure of WNV protease, created through homology modeling based on the crystal structures of Dengue-2 and Hepatitis C NS3 viral proteases, provides some valuable insights for structure-based design of potent and selective inhibitors of WNV protease.
Resumo:
Eukaryotic gene expression, reflected in the amount of steady-state mRNA, is regulated at the post-transcriptional level. The 5'-untranslated regions (5'-UTRs) of some transcripts contain cis-acting elements, including upstream open reading frames (uORFs), that have been identified as being fundamental in modulating translation efficiency and mRNA stability. Previously, we demonstrated that uORFs present in the 5'-UTR of cystic fibrosis transmembrane conductance regular (CFTR) transcripts expressed in the heart were able to modulate translation efficiency of the main CFTR ORF. Here, we show that the same 5'-UTR elements are associated with the differential stability of the 5'-UTR compared to the main coding region of CFTR transcripts. Furthermore, these post-transcriptional mechanisms are important factors governing regulated CFTR expression in the heart, in response to developmental and pathophysiological stimuli. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Milk proteins have been studied continuously for over 50 years. Knowledge of this complex protein system has evolved incrementally in recent decades, largely coinciding with advances in technology. Proteomics and associated technologies have the potential to facilitate further advances in our knowledge of milk proteins. Proteomics allows for the detection, identification and characterization of milk proteins. More importantly, proteomics facilitates the analysis of large numbers of milk proteins simultaneously. In the first part of this review we provide a description of the key techniques used within proteomic methodologies, with an emphasis on their general uses within proteomics. In the second part we summarize recent applications of proteomics to milk proteins and highlight the potential for new and rapid advances in the analysis of milk proteins. In particular, we emphasise the effectiveness of two-dimensional gel electrophoresis in combination with various mass spectrometry techniques for the detailed characterization of milk proteins. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
AIM: To establish a simple method to quantify muscle/fat constituents in cervical muscles of asymptomatic women using magnetic resonance imaging (MRI), and to determine whether there is an age effect within a defined age range. MATERIALS AND METHODS: MRI of the upper cervical spine was performed for 42 asymptomatic women aged 18-45 years. The muscle and fat signal intensities on axial spin echo T1-weighted images were quantitatively classified by taking a ratio of the pixel intensity profiles of muscle against those of intermuscular fat for the rectus capitis posterior major and minor and inferior obliquus capitis muscles bilaterally. Inter- and intra-examiner agreement was scrutinized. RESULTS: The average relative values of fat within the upper cervical musculature compared with intermuscular fat indicated that there were only slight variations in indices between the three sets of muscles. There was no significant correlation between age and fat indices. There were significant differences for the relative fat within the muscle compared with intermuscular fat and body mass index for the right rectus capitis posterior major and right and left inferior obliquus capitis muscles (p = 0.032). Intraclass correlation coefficients for intraobserver agreement ranged from 0.94 to 0.98. Inter-rater agreement of the measurements ranged from 0.75 to 0.97. CONCLUSION: A quantitative measure of muscle/fat constituents has been developed, and results of this study indicate that relative fatty infiltration is not a feature of age in the upper cervical extensor muscles of women aged 18-45 years. (C) 2005 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Resumo:
The European Society for Paediatric Endocrinology held a consensus workshop in Manchester, UK in December 2003 to discuss issues relating to the care of GH-treated patients in the transition from paediatric to adult life. Clinicians experienced in the care of paediatric and adult patients on GH treatment, from a wide range of countries, as well as medical representatives from the pharmaceutical manufacturers of GH participated.
Resumo:
The Rho family GTPases are regulatory molecules that link surface receptors to organisation of the actin cytoskeleton and play major roles in fundamental cellular processes. In the vasculature Rho signalling pathways are intimately involved in the regulation of endothelial barrier function, inflammation and transendothelial leukocyte migration, platelet activation, thrombosis and oxidative stress, as well as smooth muscle contraction, migration, proliferation and differentiation, and are thus implicated in many of the changes associated with atherogenesis. Indeed, it is believed that many of the beneficial, non-lipid lowering effects of statins occur as a result of their ability to inhibit Rho protein activation. Conversely, the Rho proteins can have beneficial effects on the vasculature, including the promotion of endothelial repair and the maintenance of SMC differentiation. Further identification of the mechanisms by which these proteins and their effectors act in the vasculature should lead to therapies that specifically target only the adverse effects of Rho signalling. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.