937 resultados para 091301 Acoustics and Noise Control (excl. Architectural Acoustics)
Resumo:
Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.
Resumo:
In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Modern advances in technology have led to more complex manufacturing processes whose success centres on the ability to control these processes with a very high level of accuracy. Plant complexity inevitably leads to poor models that exhibit a high degree of parametric or functional uncertainty. The situation becomes even more complex if the plant to be controlled is characterised by a multivalued function or even if it exhibits a number of modes of behaviour during its operation. Since an intelligent controller is expected to operate and guarantee the best performance where complexity and uncertainty coexist and interact, control engineers and theorists have recently developed new control techniques under the framework of intelligent control to enhance the performance of the controller for more complex and uncertain plants. These techniques are based on incorporating model uncertainty. The newly developed control algorithms for incorporating model uncertainty are proven to give more accurate control results under uncertain conditions. In this paper, we survey some approaches that appear to be promising for enhancing the performance of intelligent control systems in the face of higher levels of complexity and uncertainty.
Resumo:
Work on human self-Awareness is the basis for a framework to develop computational systems that can adaptively manage complex dynamic tradeoffs at runtime. An architectural case study in cloud computing illustrates the framework's potential benefits.
Resumo:
This research pursued the conceptualization and real-time verification of a system that allows a computer user to control the cursor of a computer interface without using his/her hands. The target user groups for this system are individuals who are unable to use their hands due to spinal dysfunction or other afflictions, and individuals who must use their hands for higher priority tasks while still requiring interaction with a computer. ^ The system receives two forms of input from the user: Electromyogram (EMG) signals from muscles in the face and point-of-gaze coordinates produced by an Eye Gaze Tracking (EGT) system. In order to produce reliable cursor control from the two forms of user input, the development of this EMG/EGT system addressed three key requirements: an algorithm was created to accurately translate EMG signals due to facial movements into cursor actions, a separate algorithm was created that recognized an eye gaze fixation and provided an estimate of the associated eye gaze position, and an information fusion protocol was devised to efficiently integrate the outputs of these algorithms. ^ Experiments were conducted to compare the performance of EMG/EGT cursor control to EGT-only control and mouse control. These experiments took the form of two different types of point-and-click trials. The data produced by these experiments were evaluated using statistical analysis, Fitts' Law analysis and target re-entry (TRE) analysis. ^ The experimental results revealed that though EMG/EGT control was slower than EGT-only and mouse control, it provided effective hands-free control of the cursor without a spatial accuracy limitation, and it also facilitated a reliable click operation. This combination of qualities is not possessed by either EGT-only or mouse control, making EMG/EGT cursor control a unique and practical alternative for a user's cursor control needs. ^
Resumo:
The tragic events of September 11th ushered a new era of unprecedented challenges. Our nation has to be protected from the alarming threats of adversaries. These threats exploit the nation's critical infrastructures affecting all sectors of the economy. There is the need for pervasive monitoring and decentralized control of the nation's critical infrastructures. The communications needs of monitoring and control of critical infrastructures was traditionally catered for by wired communication systems. These technologies ensured high reliability and bandwidth but are however very expensive, inflexible and do not support mobility and pervasive monitoring. The communication protocols are Ethernet-based that used contention access protocols which results in high unsuccessful transmission and delay. An emerging class of wireless networks, named embedded wireless sensor and actuator networks has potential benefits for real-time monitoring and control of critical infrastructures. The use of embedded wireless networks for monitoring and control of critical infrastructures requires secure, reliable and timely exchange of information among controllers, distributed sensors and actuators. The exchange of information is over shared wireless media. However, wireless media is highly unpredictable due to path loss, shadow fading and ambient noise. Monitoring and control applications have stringent requirements on reliability, delay and security. The primary issue addressed in this dissertation is the impact of wireless media in harsh industrial environment on the reliable and timely delivery of critical data. In the first part of the dissertation, a combined networking and information theoretic approach was adopted to determine the transmit power required to maintain a minimum wireless channel capacity for reliable data transmission. The second part described a channel-aware scheduling scheme that ensured efficient utilization of the wireless link and guaranteed delay. Various analytical evaluations and simulations are used to evaluate and validate the feasibility of the methodologies and demonstrate that the protocols achieved reliable and real-time data delivery in wireless industrial networks.
Resumo:
Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, (1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) .7%), borderline (HbA1c 7-8.9%), and poor (HbA1c .9%) glycemic control and potentially new risk factors (e.g. work characteristics), and (2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and (3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.^
Resumo:
Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, 1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) ≥7%), borderline (HbA1c 7-8.9%), and poor (HbA1c ≥9%) glycemic control and potentially new risk factors (e.g. work characteristics), and 2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and 3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.
Resumo:
The theoretical construct of control has been defined as necessary (Etzioni, 1965), ubiquitous (Vickers, 1967), and on-going (E. Langer, 1983). Empirical measures, however, have not adequately given meaning to this potent construct, especially within complex organizations such as schools. Four stages of theory-development and empirical testing of school building managerial control using principals and teachers working within the nation's fourth largest district are presented in this dissertation as follows: (1) a review and synthesis of social science theories of control across the literatures of organizational theory, political science, sociology, psychology, and philosophy; (2) a systematic analysis of school managerial activities performed at the building level within the context of curricular and instructional tasks; (3) the development of a survey questionnaire to measure school building managerial control; and (4) initial tests of construct validity including inter-item reliability statistics, principal components analyses, and multivariate tests of significance. The social science synthesis provided support of four managerial control processes: standards, information, assessment, and incentives. The systematic analysis of school managerial activities led to further categorization between structural frequency of behaviors and discretionary qualities of behaviors across each of the control processes and the curricular and instructional tasks. Teacher survey responses (N=486) reported a significant difference between these two dimensions of control, structural frequency and discretionary qualities, for standards, information, and assessments, but not for incentives. The descriptive model of school managerial control suggests that (1) teachers perceive structural and discretionary managerial behaviors under information and incentives more clearly than activities representing standards or assessments, (2) standards are primarily structural while assessments are primarily qualitative, (3) teacher satisfaction is most closely related to the equitable distribution of incentives, (4) each of the structural managerial behaviors has a qualitative effect on teachers, and that (5) certain qualities of managerial behaviors are perceived by teachers as distinctly discretionary, apart from school structure. The variables of teacher tenure and school effectiveness reported significant effects on school managerial control processes, while instructional levels (elementary, junior, and senior) and individual school differences were not found to be significant for the construct of school managerial control.
Resumo:
The environmental characteristics can modify the acoustics of a species due to habitat, time of day and year. Therefore, this study investigated the relationships between seasons, tide, daily cycle of tides, times of day and different habitat and noise emission of S. guianensis. Sound recordings occurred in the Curral’s Cove and Lagoon Complex of Guaraíras (CLG) in the municipality of Tibau do Sul/RN. Whistles are emitted with lower frequency during rainy season and spring tide while clicks are higher; whistles, clicks and calls have higher frequency during ebb tide. These modifications can be related with turbidity and prey availability. The whistles and clicks occurrence are higher at night probably because luminosity is lower. Furthermore, the whistles and clicks frequency reduction overnight allows the sound to travel longer distance and helps the view which is limited; but the minimum frequency increase was needed to catch the prey. The low occurrence of calls could be related to the small group size. The acoustic changes at night may be partly influenced by light levels as prey availability that is larger in this period. Whistle frequencies and click initial frequency are higher in CLG than Curral’s cove that permitted good precision. However, click central frequency is lower and may be connected to tracking the area. Several factors may be associated with such modifications as background noise, bottom and others. This study supports the hypothesis that S. guianensis presents an acoustic plasticity according to the local conditions where the species is embedded and adapts to the environmental changes.
Resumo:
The aim of this thesis was to investigate the high prevalence of Clostridium difficile in patients with cystic fibrosis (CF), and to control its dissemination. To determine the carriage rate of C. difficile in CF patients, 60 patients were tested for C. difficile and its toxin. In total, 50% of patients were found to be asymptomatic carriers of C. difficile despite toxin being detected in 31.66% of patients. Ribotyping of the C. difficile isolates revealed 16 distinct ribotypes, including the hyper virulent RT078. All isolates were sensitive to both Vancomycin and Metronidazole. The effect of CF and its treatment on the gut microbiota of CF patients was assessed by 16s sequencing of the gut microbiota of 68 CF patients. When compared to a healthy control group, CF patient gut microbiota was found to be less diverse and had an increased Firmicutes to Bacteriodetes ratio. Interestingly, CF patients who were carriers of C. difficile had a less diverse gut microbiota than C. difficile negative CF patients. Multilocus sequence typing was found to be comparable to PCR-ribotyping for typing C. difficile isolates from high risk patient groups. The sequence type ST 26 is potentially associated with CF patients as all seven isolates were found in this group and this sequence type has been previously reported in CF patients in a geographically distinct study. The bacteriophage ФCD6356 was assessed as a targeted antimicrobial against C. difficile in an ex-vivo model of the human distal colon. Despite reducing viable C. difficile by 1.75 logs over 24 hours, this bacteriophage was not suitable due to its lysogenic nature. Following treatment, all surviving C. difficile were immune to reinfection due to prophage integration. However, the ФCD6356 encoded endolysin was capable of reducing viable C. difficile by 2.9 over 2 hours in vitro after being cloned and expressed in Escherichia coli.
Resumo:
A publication emerging out of a successful international conference I co-organised on noise in 2010. The first of two volumes, this one focuses on noise as an aesthetic, political and cultural concept, and a range of noise practices beyond purely sonic ones, such as audiovisual noise and noise in communication theory. It argues that noise is fundamental to contemporary communication practices and facilitates a reversal of perspective in how these practices can be understood
Resumo:
This paper reports the findings from a study of the learning of English intonation by Spanish speakers within the discourse mode of L2 oral presentation. The purpose of this experiment is, firstly, to compare four prosodic parameters before and after an L2 discourse intonation training programme and, secondly, to confirm whether subjects, after the aforementioned L2 discourse intonation training, are able to match the form of these four prosodic parameters to the discourse-pragmatic function of dominance and control. The study designed the instructions and tasks to create the oral and written corpora and Brazil’s Pronunciation for Advanced Learners of English was adapted for the pedagogical aims of the present study. The learners’ pre- and post-tasks were acoustically analysed and a pre / post- questionnaire design was applied to interpret the acoustic analysis. Results indicate most of the subjects acquired a wider choice of the four prosodic parameters partly due to the prosodically-annotated transcripts that were developed throughout the L2 discourse intonation course. Conversely, qualitative and quantitative data reveal most subjects failed to match the forms to their appropriate pragmatic functions to express dominance and control in an L2 oral presentation.
Resumo:
Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V-shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V-shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in Matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to four times of the rated. A prototype of the V-shape interior PMSM is also manufactured and tested to validate the numerical models built by the FEM.
Resumo:
Cognitive radio (CR) is fast emerging as a promising technology that can meet the machine-to machine (M2M) communication requirements for spectrum utilization and power control for large number of machines/devices expected to be connected to the Internet-of Things (IoT). Power control in CR as a secondary user can been modelled as a non-cooperative game cost function to quantify and reduce its effects of interference while occupying the same spectrum as primary user without adversely affecting the required quality of service (QoS) in the network. In this paper a power loss exponent that factors in diverse operating environments for IoT is employed in the non-cooperative game cost function to quantify the required power of transmission in the network. The approach would enable various CRs to transmit with lesser power thereby saving battery consumption or increasing the number of secondary users thereby optimizing the network resources efficiently.