974 resultados para 0303 Macromolecular and Materials Chemistry
Resumo:
Nanocrystalline ZrO2:Eu was synthesized by complexing sol-gel method. The effects of heat treatment on structure, grain size and luminescence properties of ZrO2:Eu were studied with X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence measurements. The dependence between the fluorescence emission and the crystalline structure is discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A new post-grafting process, consisting of two steps of substrate preparation and sol - gel post-grafting, has been developed to prepare titanium-doped mesoporous SBA-15 material with a double-layered structure and locally concentrated titanium content at the inner pore surface. With this novel technique, the single phased and originally ordered mesostructures can be well conserved; in the conventional direct synthesis they can be partially damaged when the frameworks are doped with high content heteroatoms. Titanium species exist in an isolated, tetrahedral structure and are localized at the pore surface; this is beneficial to both reactant access and product release. Characterization with XRD, N-2 adsorption/desorption isotherms, HREM/ EDS, ICP, UV - Vis, and the newly developed UV - Raman spectroscopy confirm these results. Preliminary catalytic tests with the selective epoxidation of cyclohexene show good catalytic activity. Among them, sample TiSBA-15-10 with a Si : Ti molar ratio of 10 shows a TON value of 75 and a highest product ( epoxide) yield of 55%.
Resumo:
Manfred Beckmann, David P. Enot, David P. Overy, and John Draper (2007). Representation, comparison, and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars. Journal of Agricultural and Food Chemistry, 55 (9) pp.3444-3451 RAE2008
Resumo:
The research described in this thesis involved the chemistry of borane-species which contain one or more halide or pseudohalide groups. Both monoboron species e.g. [BH3X]- and "cluster" borane species e.g. [B10H9X]2- and I-Se B11H10 were studied. The first chapter is a review of the syntheses, properties and reactions of halide and pseudohalide species containing from one to ten boron atoms. Chapter Two is a theoretical investigation of' the electronic and molecular structures of two series of boranes i. e. [BH3X]- and [B10H9X]2- where X = H, CI, CN, NCS, SCN and N3. The calculational method used was the Modified Neglect of Differential Overlap (MNDO) method of Dewar et al. The results were compared where possible with experimental results such as the X-ray crystallographically determined structures of [BH3CI]- and [B10H10]2-. Chapter Three concerns halogenated selenaborane clusters and reports an improved synthesis of 12-Br-SeB11H10 and the first structural data for a simple non-metal containing selenaborane cage with the X-ray crystallographically determined structure of 12-1-SeB11H10. Finally, an indepth n.m.r. study of Se2B9H9 is also reported together with attempts to halogenate this compound. The last two chapters are based on single boron systems. Chapter Four concerns the synthetic routes to amine-boranes and -cyanoboranes from [BH4]- and [BH3CN]- substrates. This chapter discusses some difficulties encountered when polyamines were used in these reactions. The characterisation of an unusual ketone isolated from some of these reactions, the X-ray crystallographically determined structure of 4-dimethylamino-pyridine-cyanoborane and a new route to pyrazabole dimeric species are also discussed. The final chapter reports on work carried out at producing BH2X (X = H, CN) adducts of aminophosphines. Three routes were attempted to generate P-B and N-B bonded species with varying degrees of success. Some unusual products of these reactions are discussed including [Ph2(O) PPPh2 ] [Ph2NH]2, the structure of which was determined by X-ray crystallography.
Resumo:
In the last two decades, semiconductor nanocrystals have been the focus of intense research due to their size dependant optical and electrical properties. Much is now known about how to control their size, shape, composition and surface chemistry, allowing fine control of their photophysical and electronic properties. However, genuine concerns have been raised regarding the heavy metal content of these materials, which is toxic even at relatively low concentrations and may limit their wide scale use. These concerns have driven the development of heavy metal free alternatives. In recent years, germanium nanocrystals (Ge NCs) have emerged as environmentally friendlier alternatives to II-VI and IV-VI semiconductor materials as they are nontoxic, biocompatible and electrochemically stable. This thesis reports the synthesis and characterisation of Ge NCs and their application as fluorescence probes for the detection of metal ions. A room-temperature method for the synthesis of size monodisperse Ge NCs within inverse micelles is reported, with well-defined core diameters that may be tuned from 3.5 to 4.5 nm. The Ge NCs are chemically passivated with amine ligands, minimising surface oxidation while rendering the NCs dispersible in a range of polar solvents. Regulation of the Ge NCs size is achieved by variation of the ammonium salts used to form the micelles. A maximum quantum yield of 20% is shown for the nanocrystals, and a transition from primarily blue to green emission is observed as the NC diameter increases from 3.5 to 4.5 nm. A polydisperse sample with a mixed emission profile is prepared and separated by centrifugation into individual sized NCs which each showed blue and green emission only, with total suppression of other emission colours. A new, efficient one step synthesis of Ge NCs with in situ passivation and straightforward purification steps is also reported. Ge NCs are formed by co-reduction of a mixture of GeCl4 and n-butyltrichlorogermane; the latter is used both as a capping ligand and a germanium source. The surface-bound layer of butyl chains both chemically passivates and stabilises the Ge NCs. Optical spectroscopy confirmed that these NCs are in the strong quantum confinement regime, with significant involvement of surface species in exciton recombination processes. The PL QY is determined to be 37 %, one of the highest values reported for organically terminated Ge NCs. A synthetic method is developed to produce size monodisperse Ge NCs with modified surface chemistries bearing carboxylic acid, acetate, amine and epoxy functional groups. The effect of these different surface terminations on the optical properties of the NCs is also studied. Comparison of the emission properties of these Ge NCs showed that the wavelength position of the PL maxima could be moved from the UV to the blue/green by choice of the appropriate surface group. We also report the application of water-soluble Ge NCs as a fluorescent sensing platform for the fast, highly selective and sensitive detection of Fe3+ ions. The luminescence quenching mechanism is confirmed by lifetime and absorbance spectroscopies, while the applicability of this assay for detection of Fe3+ in real water samples is investigated and found to satisfy the US Environmental Protection Agency requirements for Fe3+ levels in drinkable water supplies.
Resumo:
Photonic crystals (PhCs) influence the propagation of light by their periodic variation in dielectric contrast or refractive index. This review outlines the attractive optical qualities inherent to most PhCs namely the presence of full or partial photonic band gaps and the possibilities they present towards the inhibition of spontaneous emission and the localization of light. Colloidal self-assembly of polymer or silica spheres is one of the most favoured and low cost methods for the formation of PhCs as artificial opals. The state of the art in growth methods currently used for colloidal self-assembly are discussed and the use of these structures for the formation of inverse opal architectures is then presented. Inverse opal structures with their porous and interconnected architecture span several technological arenas - optics and optoelectronics, energy storage, communications, sensor and biological applications. This review presents several of these applications and an accessible overview of the physics of photonic crystal optics that may be useful for opal and inverse opal researchers in general, with a particular emphasis on the recent use of these three-dimensional porous structures in electrochemical energy storage technology. Progress towards all-optical integrated circuits may lie with the concepts of the photonic crystal, but the unique optical and structural properties of these materials and the convergence of PhC and energy storage disciplines may facilitate further developments and non-destructive optical analysis capabilities for (electro)chemical processes that occur within a wide variety of materials in energy storage research.
Resumo:
YCY pincer palladacycles, where YCY is typically an SCS, NCN, PCP, SeCSe anionic six-electron donor ligand (e.g. see 1-6, Scheme 1.1), are a well-established family of organometallic complexes with manifold applications in catalysis, synthesis and materials science [1-24]. Their synthesis can be achieved by many routes including C-H activation, oxidative addition, transmetalation and trans-cyclopalladation [25].
Resumo:
Using fluorescence microscopy, DSC and DMTA we have explored blends of a bitumen with a styrene-butadiene-styrene (SBS) block copolymer, and with blends of the bitumen with SBS and one or two homopolymers - a polystyrene and a poly(cis-butadiene). The SBS polymer was progressively replaced with quantities of the homopolymers both together in the proportions found in the block copolymer and then by each homopolymer separately. At low temperatures the blends are all softer than the bitumen itself, so the polymers plasticise the bitumen-rich phase, and above 50°C the blends' stiffness (E') falls below a plateau only when a critical proportion of the block copolymer has been replaced with the two homopolymers: this supports the idea of an extensive network created by the polystyrene-rich spherical microphases that is effective even when the polystyrene microphases have melted. In one polymer blend the stiffness rose as the temperature was raised above 100°C, suggesting the development of a mesophase based upon polybutadiene plus asphaltenes, in another E' was enhanced and E" remained constant as the temperature rose above 70°C, perhaps for a similar reason; in some loss process appeared and the stiffness fell as temperature rose; but in others a good part of the SBS was replaced by either polystyrene or polybutadiene without changing the appearance of a rubbery plateau, that is, without a diminution of the mechanical properties of the soft matter.