892 resultados para åk 4-6
Resumo:
The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE III.
Resumo:
Several types of parallelism can be exploited in logic programs while preserving correctness and efficiency, i.e. ensuring that the parallel execution obtains the same results as the sequential one and the amount of work performed is not greater. However, such results do not take into account a number of overheads which appear in practice, such as process creation and scheduling, which can induce a slow-down, or, at least, limit speedup, if they are not controlled in some way. This paper describes a methodology whereby the granularity of parallel tasks, i.e. the work available under them, is efficiently estimated and used to limit parallelism so that the effect of such overheads is controlled. The run-time overhead associated with the approach is usually quite small, since as much work is done at compile time as possible. Also,a number of run-time optimizations are proposed. Moreover, a static analysis of the overhead associated with the granularity control process is performed in order to decide its convenience. The performance improvements resulting from the incorporation of grain size control are shown to be quite good, specially for systems with medium to large parallel execution overheads.
Resumo:
Pax proteins are a family of transcription factors with a highly conserved paired domain; many members also contain a paired-type homeodomain and/or an octapeptide. Nine mammalian Pax genes are known and classified into four subgroups: Pax-1/9, Pax-2/5/8, Pax-3/7, and Pax-4/6. Most of these genes are involved in nervous system development. In particular, Pax-6 is a key regulator that controls eye development in vertebrates and Drosophila. Although the Pax-4/6 subgroup seems to be more closely related to Pax-2/5/8 than to Pax-3/7 or Pax-1/9, its evolutionary origin is unknown. We therefore searched for a Pax-6 homolog and related genes in Cnidaria, which is the lowest phylum of animals that possess a nervous system and eyes. A sea nettle (a jellyfish) genomic library was constructed and two pax genes (Pax-A and -B) were isolated and partially sequenced. Surprisingly, unlike most known Pax genes, the paired box in these two genes contains no intron. In addition, the complete cDNA sequences of hydra Pax-A and -B were obtained. Hydra Pax-B contains both the homeodomain and the octapeptide, whereas hydra Pax-A contains neither. DNA binding assays showed that sea nettle Pax-A and -B and hydra Pax-A paired domains bound to a Pax-5/6 site and a Pax-5 site, although hydra Pax-B paired domain bound neither. An alignment of all available paired domain sequences revealed two highly conserved regions, which cover the DNA binding contact positions. Phylogenetic analysis showed that Pax-A and especially Pax-B were more closely related to Pax-2/5/8 and Pax-4/6 than to Pax-1/9 or Pax-3/7 and that the Pax genes can be classified into two supergroups: Pax-A/Pax-B/Pax-2/5/8/4/6 and Pax-1/9/3/7. From this analysis and the gene structure, we propose that modern Pax-4/6 and Pax-2/5/8 genes evolved from an ancestral gene similar to cnidarian Pax-B, having both the homeodomain and the octapeptide.
Resumo:
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked with 10 mM pyruvate in acidic conditions at pH 4.6. Structure determination to 1.95-Å resolution showed that pyruvate had undergone nucleophilic attack with Lys-133, forming a protonated carbinolamine intermediate, a functional Schiff base precursor, which was stabilized by hydrogen bonding with active site residues. Carbinolamine interaction with Glu-45 indicates general base catalysis of several rate steps. Stereospecific addition is ensured by aromatic interaction of Phe-135 with the pyruvate methyl group. In the native structure, Lys-133 donates all of its hydrogen bonds, indicating the presence of an ɛ-ammonium salt group. Nucleophilic activation is postulated to occur by proton transfer in the monoprotonated zwitterionic pair (Glu-45/Lys-133). Formation of the zwitterionic pair requires prior side chain rearrangement by protonated Lys-133 to displace a water molecule, hydrogen bonded to the zwitterionic residues.
Resumo:
Opitz syndrome (OS) is a human genetic disease characterized by deformities such as cleft palate that are attributable to defects in embryonic development at the midline. Gene mapping has identified OS mutations within a protein called Mid1. Wild-type Mid1 predominantly colocalizes with microtubules, in contrast to mutant versions of Mid1 that appear clustered in the cytosol. Using yeast two-hybrid screening, we found that the α4-subunit of protein phosphatases 2A/4/6 binds Mid1. Epitope-tagged α4 coimmunoprecipitated endogenous or coexpressed Mid1 from COS7 cells, and this required only the conserved C-terminal region of α4. Localization of Mid1 and α4 was influenced by one another in transiently transfected cells. Mid1 could recruit α4 onto microtubules, and high levels of α4 could displace Mid1 into the cytosol. Metabolic 32P labeling of cells showed that Mid1 is a phosphoprotein, and coexpression of full-length α4 decreased Mid1 phosphorylation, indicative of a functional interaction. Association of green fluorescent protein–Mid1 with microtubules in living cells was perturbed by inhibitors of MAP kinase activation. The conclusion is that Mid1 association with microtubules, which seems important for normal midline development, is regulated by dynamic phosphorylation involving MAP kinase and protein phosphatase that is targeted specifically to Mid1 by α4. Human birth defects may result from environmental or genetic disruption of this regulatory cycle.
Resumo:
The expression of desacetoxyvindoline 4-hydroxylase (D4H), which catalyzes the second to the last reaction in vindoline biosynthesis in Catharanthus roseus, appears to be under complex, multilevel developmental and light regulation. Developmental studies with etiolated and light-treated seedlings suggested that although light had variable effects on the levels of d4h transcripts, those of D4H protein and enzyme activity could be increased, depending on seedling development, up to 9- and 8-fold, respectively, compared with etiolated seedlings. However, light treatment of etiolated seedlings could stop and reverse the decline of d4h transcripts at later stages of seedling development. Repeated exposure of seedlings to light was also required to maintain the full spectrum of enzyme activity observed during seedling development. Further studies showed that a photoreversible phytochrome appeared to be involved in the activation of D4H, since red-light treatment of etiolated seedlings increased the detectable levels of d4h transcripts, D4H protein, and D4H enzyme activity, whereas far-red-light treatment completely reversed this process. Additional studies also confirmed that different major isoforms of D4H protein exist in etiolated (isoelectric point, 4.7) and light-grown (isoelectric point, 4.6) seedlings, suggesting that a component of the light-mediated activation of D4H may involve an undetermined posttranslational modification. The biological reasons for this complex control of vindoline biosynthesis may be related to the need to produce structures that could sequester away from cellular activities the cytotoxic vinblastine and vincristine dimers that are derived partially from vindoline.
Resumo:
The four major oligomeric reaction products from saponified modified hairy regions (MHR-S) from apple, produced by recombinant rhamnogalacturonan (RG) α-l-rhamnopyranosyl-(1,4)-α-d-galactopyranosyluronide lyase (rRG-lyase) from Aspergillus aculeatus, were isolated and characterized by 1H-nuclear magnetic resonance spectroscopy. They contain an alternating RG backbone with a degree of polymerization of 4, 6, 8, and 10 and with an α-Δ-(4,5)-unsaturated d-galactopyranosyluronic acid at the nonreducing end and an l-rhamnopyranose at the reducing end. l-Rhamnopyranose units are substituted at C-4 with β-galactose. The maximum reaction rate of rRG-lyase toward MHR-S at pH 6.0 and 31°C was 28 units mg−1. rRG-lyase and RG-hydrolase cleave the same alternating RG I subunit in MHR. Both of these enzymes fragment MHR by a multiple attack mechanism. The catalytic efficiency of rRG-lyase for MHR increases with decreasing degree of acetylation. Removal of arabinose side chains improves the action of rRG-lyase toward MHR-S. In contrast, removal of galactose side chains decreased the catalytic efficiency of rRG-lyase. Native RG-lyase was purified from A. aculeatus, characterized, and found to be similar to the rRG-lyase expressed in Aspergillus oryzae.
Resumo:
The inhibition of alpha i2-/- mouse cardiac isoproterenol-stimulated adenylyl cyclase (AC; EC 4.6.1.1) activity by carbachol and that of alpha i2-/- adipocyte AC by phenylisopropyladenosine (PIA), prostaglandin E2, and nicotinic acid were partially, but not completely, inhibited. While the inhibition of cardiac AC was affected in all alpha i2-/- animals tested, only 50% of the alpha i2-/- animals showed an impaired inhibition of adipocyte AC, indicative of a partial penetrance of this phenotype. In agreement with previous results, the data show that Gi2 mediates hormonal inhibition of AC and that Gi3 and/or Gi1 is capable of doing the same but with a lower efficacy. Disruption of the alpha i2 gene affected about equally the actions of all the receptors studied, indicating that none of them exhibits a striking specificity for one type of Gi over another and that receptors are likely to he selective rather than specific in their interaction with functionally homologous G proteins (e.g., Gi1, Gi2, Gi3). Western analysis of G protein subunit levels in simian virus 40-transformed primary embryonic fibroblasts from alpha i2+/+ and alpha i2-/- animals showed that alpha i2 accounts for about 50% of the immunopositive G protein alpha subunits and that loss of the alpha i2 is accompanied by a parallel reduction in G beta 35 and G beta 36 subunits and by a 30-50% increase in alpha i3. This suggests that G beta-gamma levels may be regulated passively through differential rates of turnover in their free vs. trimeric states. The existence of compensatory increase(s) in alpha i subunit expression raises the possibility that the lack of effect of a missing alpha i2 on AC inhibition in adipocytes of some alpha i2-/- animals may be the reflection of a more pronounced compensatory expression of alpha i3 and/or alpha i1.
Resumo:
Determinants of the recommended dietary allowance (RDA) for vitamin C include the relationship between vitamin C dose and steady-state plasma concentration, bioavailability, urinary excretion, cell concentration, and potential adverse effects. Because current data are inadequate, an in-hospital depletion-repletion study was conducted. Seven healthy volunteers were hospitalized for 4-6 months and consumed a diet containing <5 mg of vitamin C daily. Steady-state plasma and tissue concentrations were determined at seven daily doses of vitamin C from 30 to 2500 mg. Vitamin C steady-state plasma concentrations as a function of dose displayed sigmoid kinetics. The steep portion of the curve occurred between the 30- and 100-mg daily dose, the current RDA of 60 mg daily was on the lower third of the curve, the first dose beyond the sigmoid portion of the curve was 200 mg daily, and complete plasma saturation occurred at 1000 mg daily. Neutrophils, monocytes, and lymphocytes saturated at 100 mg daily and contained concentrations at least 14-fold higher than plasma. Bioavailability was complete for 200 mg of vitamin C as a single dose. No vitamin C was excreted in urine of six of seven volunteers until the 100-mg dose. At single doses of 500 mg and higher, bioavailability declined and the absorbed amount was excreted. Oxalate and urate excretion were elevated at 1000 mg of vitamin C daily compared to lower doses. Based on these data and Institute of Medicine criteria, the current RDA of 60 mg daily should be increased to 200 mg daily, which can be obtained from fruits and vegetables. Safe doses of vitamin C are less than 1000 mg daily, and vitamin C daily doses above 400 mg have no evident value.
Resumo:
Diamide oxidizes cellular thiols and induces oxidative stress. To isolate plant genes which may, when overexpressed, increase tolerance of plants toward oxidative damage, an in vivo diamide tolerance screening in yeasts was used. An Arabidopsis cDNA library in a yeast expression vector was used to transform a yeast strain with intact antioxidant defense. Cells from approximately 10(5) primary transformants were selected for resistance to diamide. Three Arabidopsis cDNAs which confer diamide tolerance were isolated. This drug tolerance was specific and no cross tolerance toward hydroperoxides was found. One cDNA (D3) encodes a polypeptide which has an amino-terminal J domain characteristic of a divergent family of DnaJ chaperones. Another (D18) encodes a putative dTDP-D-glucose 4,6-dehydratase. Surprisingly, the third cDNA (D22) encodes a plant homolog of gamma-glutamyltransferases. It would have been difficult to predict that the expression of those genes would lead to an improved survival under conditions of depletion of cellular thiols. Hence, we suggest that this cloning approach may be a useful contribution to the isolation of plant genes that can help to cope with oxidative stress.
Resumo:
Analogs of the immunosuppressive cyclic undecapeptide cyclosporin A (CsA) with substitutions in positions 1, 4, 6, and/or 11 were rationally designed to possess substantially diminished or no immunosuppressive activity. When these compounds were assayed for their capacity to interfere with the replication of human immunodeficiency virus, some displayed a potent antiviral activity in newly infected cells. However, only CsA could interfere with virus replication in persistently infected cells. One CsA analog with antiviral activity costimulated the phytohemagglutinin-induced production of interleukin 2 by human lymphocytes. Human immunodeficiency virus particles from drug-exposed cells showed lower infectivity than virions from untreated cells. Thus, these nonimmunosuppressive analogs of CsA constitute a promising class of lead compounds to develop drugs for effective treatment of the acquired immunodeficiency syndrome.
Resumo:
We present optical integral field spectroscopy (IFS) observations of the Mice, a major merger between two massive (≳10^11 M_⊙) gas-rich spirals NGC 4676A and B, observed between first passage and final coalescence. The spectra provide stellar and gas kinematics, ionised gas properties, and stellar population diagnostics, over the full optical extent of both galaxies with ~1.6 kpc spatial resolution. The Mice galaxies provide a perfect case study that highlights the importance of IFS data for improving our understanding of local galaxies. The impact of first passage on the kinematics of the stars and gas has been significant, with strong bars most likely induced in both galaxies. The barred spiral NGC 4676B exhibits a strong twist in both its stellar and ionised gas disk. The edge-on disk galaxy NGC 4676A appears to be bulge free, with a strong bar causing its “boxy” light profile. On the other hand, the impact of the merger on the stellar populations has been minimal thus far. By combining the IFS data with archival multiwavelength observations we show that star formation induced by the recent close passage has not contributed significantly to the total star formation rate or stellar mass of the galaxies. Both galaxies show bicones of high ionisation gas extending along their minor axes. In NGC 4676A the high gas velocity dispersion and Seyfert-like line ratios at large scaleheight indicate a powerful outflow. Fast shocks (vs ~ 350 km s^-1) extend to ~6.6 kpc above the disk plane. The measured ram pressure (P/k = 4.8 × 10^6 K cm^-3) and mass outflow rate (~8−20 M_⊙ yr^-1) are similar to superwinds from local ultra-luminous infrared galaxies, although NGC 4676A only has a moderate infrared luminosity of 3 × 10^10 L_⊙. Energy beyond what is provided by the mechanical energy of the starburst appears to be required to drive the outflow. Finally, we compare the observations to mock kinematic and stellar population maps extracted from a hydrodynamical merger simulation. The models show little enhancement in star formation during and following first passage, in agreement with the observations. We highlight areas where IFS data could help further constrain the models.
Resumo:
Re and Os concentrations and Os isotopic ratios were determined for composite samples prepared from volcanoclastics (VCL) and basaltic flows (FLO) from Jurassic oceanic crust (Ocean Drilling Program Leg 185, Site 801 in the western Pacific), with the aim of determining the effect of seafloor weathering on the Re-Os budget. A supercomposite sample, prepared from a proportionate mixture of the various composite powders, served to represent the average composition of the altered oceanic crust [Kelley, K.A., Plank, T., Ludden, J. and Staudigel, H., (2003). Composition of altered oceanic crust at ODP Sites 801 and 1149, Geochem. Geophys. Geosyst. 4(6) 8910, doi:10.1029/2002GC000435.]. Re contents vary from 0.2 to 1.3 ng/g, and from 2.2 to 3.1 ng/g in the VCL and FLO composites respectively. Os contents vary from 0.005 to 0.047 ng/g in the VCL, and from 0.008 to 0.027 ng/g in the FLO composites. The FLO composites have much higher Re/Os ratios and thus have more radiogenic Os compositions (187Os/188Os = 1.38 to 8.48) than the VCL composites (187Os/188Os = 0.32 to 4.40). The VCL composite from the upper section of the crust shows evidence for substantial Re loss and Os uptake, consistent with oxidative weathering processes. However, Re uptake during weathering processes under more reducing conditions, evident in the FLO samples from throughout the section and to a lesser extent in the lower VCL samples, more than compensates for this Re loss in the upper VCL. Os concentrations were essentially unchanged by these reductive processes. Model age calculations suggest that Re uptake continued for tens of millions of years after crust formation. Abundant secondary pyrite is found throughout the altered Hole 801C crust in zones of restricted seawater flow, and this may have accommodated an important part of the input Re. The Re content of the supercomposite (~2.2 ng/g) is about 1 ng/g higher than would be expected on the basis of its Yb content. If the results from Hole 801C are typical, they suggest that the Re concentration of at least the upper part of the oceanic crust may be nearly doubled during seafloor alteration. Such large extents of Re uptake would have a significant effect on the oceanic Re budget. Furthermore, assuming that they survive passage through the subduction zone, these elevated Re contents would greatly decrease the proportion of subducted oceanic crust required in the source region to explain the radiogenic Os compositions of many ocean island basalts.