974 resultados para work stressors
Resumo:
Resumen: Después de la primera sofística, los sofistas actuaron entre el resto de los pensadores del Mediterráneo como un grupo definido. Dado que hay muchos ejemplos que muestran que los sofistas ejercían sus prácticas y que también eran personas comprometidas en otras actividades, vamos a examinar aquí diversos casos de semejanzas y diferencias entre ellos y otros grupos de pensadores. Nuestras tres preguntas fundamentales son: qué, cómo y por qué los sofistas escribían y enseñaban. Intentaremos responder haciendo un análisis diacrónico de las principales formas y géneros de escritura que produjeron (qué). El cómo lo responderemos en su desenvolvimiento como una actividad comunicativa más allá de las fronteras de las disciplinas de la época. El por qué tendrá su respuesta al enfatizar la necesidad de la actividad de los sofistas en la socialización de la época y en la educación de la antigüedad. Al aseverar que el estilo era la idea de los sofistas, ponemos la noción de idea en Platón en el contexto de idea derivado de los sofistas contemporáneos a él y de los sofistas posteriores (segunda sofística) y centramos el foco en la función de visualidad expresada en su concepto de idea desde las obras sofísticas más tempranas en la época de Platón hasta las contribuciones posteriores.
Resumo:
The interface adhesion strength (or interface toughness) of a thin film/substrate system is often assessed by the micro-scratch test. For a brittle film material, the interface adhesion strength is easily obtained through measuring the scratch driving forces. However, to measure the interface adhesion strength (or interface toughness) for a metal thin film material (the ductile material) by the microscratch test is very difficult, because intense plastic deformation is involved and the problem is a three-dimensional elastic-plastic one. In the present research, using a double-cohesive zone model, the failure characteristics of the thin film/substrate system can be described and further simulated. For a steady-state scratching process, a three-dimensional elastic-plastic finite element method based on the double cohesive zone model is developed and adopted, and the steady-state fracture work of the total system is calculated. The parameter relations between the horizontal driving forces (or energy release rate of the scratching process) and the separation strength of thin film/substrate interface, and the material shear strength, as well as the material parameters are developed. Furthermore, a scratch experiment for the Al/Si film/substrate system is carried out and the failure mechanisms are explored. Finally, the prediction results are applied to a scratch experiment for the Pt/NiO material system given in the literature.
Resumo:
Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.
Resumo:
We reported that work softening takes place during room-temperature rolling of nanocrystalline Ni at an equivalent strain of around 0.30. The work softening corresponds to a strain-induced phase transformation from a face-centered cubic (fcc) to a body-centered cubic (bcc) lattice. The hardness decreases with increasing volume fraction of the bcc phase. When the deformed samples are annealed at 423 K, a hardening of the samples takes place. This hardening by annealing can be attributed to a variety of factors including the recovery transformation from the bcc to the fcc phase, grain boundary relaxation, and retardation of dislocation gliding by microtwins.
Resumo:
The relationship between hardness (H), reduced modulus (E-r), unloading work (W-u), and total work (W-t) of indentation is examined in detail experimentally and theoretically. Experimental study verifies the approximate linear relationship. Theoretical analysis confirms it. Furthermore, the solutions to the conical indentation in elastic-perfectly plastic solid, including elastic work (W-e), H, W-t, and W-u are obtained using Johnson's expanding cavity model and Lame solution. Consequently, it is found that the W-e should be distinguished from W-u, rather than their equivalence as suggested in ISO14577, and (H/E-r)/(W-u/W-t) depends mainly on the conical angle, which are also verified with numerical simulations. (C) 2008 American Institute of Physics.
Resumo:
Barium-functionalized multiwalled carbon nanotube yarns were fabricated by drawing and twisting multiwalled carbon nanotube forests through a solution containing barium nitrate. After heat activation under vacuum, the functionalized yarns were enriched in barium oxide due to the high surface-to-volume ratio of the nanotubes. The cathodes exhibited good thermionic properties, with a work function as low as 1.73-2.06 eV and thermionic current density that exceeded 185 mA/cm(2) in a field of 850 V/5 mm at 1317 K. The barium-functionalized yarns had high tensile strength of up to 420 MPa and retained strength of similar to 250 MPa after a 2 h activation process. (C) 2008 American Institute of Physics.