995 resultados para weak order
Resumo:
The act adopting information technology in State government provides electronic access to government services and information to the people of Iowa.
Resumo:
This act applying to strong science, technology, engineering and mathematics (STEM) education is essential to prepare the young people of Iowa for a competitive, global economy; and scientific literacy is also the foundation of being a good citizen.
Resumo:
This act applying to a competitive and dynamic environment for job creators is needed to achieve our goals of 200,000 new jobs for Iowans and a 25% increase in family incomes over the next five years
Resumo:
We extend the partial resummation technique of Fokker-Planck terms for multivariable stochastic differential equations with colored noise. As an example, a model system of a Brownian particle with colored noise is studied. We prove that the asymmetric behavior found in analog simulations is due to higher-order terms which are left out in that technique. On the contrary, the systematic ¿-expansion approach can explain the analog results.
Resumo:
We present analytical calculations of the turn-on-time probability distribution of intensity-modulated lasers under resonant weak optical feedback. Under resonant conditions, the external cavity round-trip time is taken to be equal to the modulation period. The probability distribution of the solitary laser results are modified to give reduced values of the mean turn-on-time and its variance. Numerical simulations have been carried out showing good agreement with the analytical results.
Resumo:
Gel electrophoresis can be used to separate nicked circular DNA molecules of equal length but forming different knot types. At low electric fields, complex knots drift faster than simpler knots. However, at high electric field the opposite is the case and simpler knots migrate faster than more complex knots. Using Monte Carlo simulations we investigate the reasons of this reversal of relative order of electrophoretic mobility of DNA molecules forming different knot types. We observe that at high electric fields the simulated knotted molecules tend to hang over the gel fibres and require passing over a substantial energy barrier to slip over the impeding gel fibre. At low electric field the interactions of drifting molecules with the gel fibres are weak and there are no significant energy barriers that oppose the detachment of knotted molecules from transverse gel fibres.
Resumo:
We study the driving-rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.
Resumo:
Experimental observations of self-organized behavior arising out of noise are also described, and details on the numerical algorithms needed in the computer simulation of these problems are given.