946 resultados para wave aberration
Resumo:
Vibrations, electromagnetic oscillations, and temperature drifts are among the main reasons for dephasing in matter-wave interferometry. Sophisticated interferometry experiments, e.g., with ions or heavy molecules, often require integration times of several minutes due to the low source intensity or the high velocity selection. Here we present a scheme to suppress the influence of such dephasing mechanisms—especially in the low-frequency regime—by analyzing temporal and spatial particle correlations available in modern detectors. Such correlations can reveal interference properties that would otherwise be washed out due to dephasing by external oscillating signals. The method is shown experimentally in a biprism electron interferometer where a perturbing oscillation is artificially introduced by a periodically varying magnetic field. We provide a full theoretical description of the particle correlations where the perturbing frequency and amplitude can be revealed from the disturbed interferogram. The original spatial fringe pattern without the perturbation can thereby be restored. The technique can be applied to lower the general noise requirements in matter-wave interferometers. It allows for the optimization of electromagnetic shielding and decreases the efforts for vibrational or temperature stabilization.
Analytic study of traveling-wave velocity variation in line-focusing schemes for plasma x-ray lasers
Resumo:
Heterodyne receivers at millimeter and submillimeter wavelength are widely used for radiometric spectral line observations for atmospheric remote sensing or radio astronomy. The quantitative analysis of such observations requires an accurate knowledge of the mixers's sideband ratio. In addition, its potential sensitivity to spurious harmonics needs to be well understood. In this paper, we discuss a measurement technique for these receiver characteristics, which is based on a scanning Martin Puplett Interferometer used in conjunction with a wide band digital autocorrelation spectrometer for the analysis of the intermediate frequency band. We present measurement results of different double sideband and sideband separating mixers, which were developed for the proposed 340GHz multi-beam limb sounder STEAMR.
Resumo:
Traveling-wave excitation close to the speed of light implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles. Pulse-front back-tilt is considered to overcome such trade-off. Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a strong front-end imaging/focusing component.
Resumo:
Sound speed as a diagnostic marker for various diseases of human tissue has been of interest for a while. Up to now, mostly transmission ultrasound computed tomography (UCT) was able to detect spatially resolved sound speed, and its promise as a diagnostic tool has been demonstrated. However, UCT is limited to acoustically transparent samples such as the breast. We present a novel technique where spatially resolved detection of sound speed can be achieved using conventional pulse-echo equipment in reflection mode. For this purpose, pulse-echo images are acquired under various transmit beam directions and a two-dimensional map of the sound speed is reconstructed from the changing phase of local echoes using a direct reconstruction method. Phantom results demonstrate that a high spatial resolution (1 mm) and contrast (0.5 % of average sound speed) can be achieved suitable for diagnostic purposes. In comparison to previous reflection-mode based methods, CUTE works also in a situation with only diffuse echoes, and its direct reconstruction algorithm enables real-time application. This makes it suitable as an addition to conventional clinical ultrasound where it has the potential to benefit diagnosis in a multimodal approach. In addition, knowledge of the spatial distribution of sound speed allows full aberration correction and thus improved spatial resolution and contrast of conventional B-mode ultrasound. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
PURPOSE Management of ureteral stones remains controversial. To determine whether optimizing extracorporeal shock wave lithotripsy (ESWL) delivery rates improves treatment of solitary ureteral stones, we compared outcomes of two SW delivery rates in a prospective, randomized trial. MATERIALS AND METHODS From July 2010 to October 2012, 254 consecutive patients were randomized to undergo ESWL at SW delivery rates of either 60 pulses (n=130) or 90 pulses (n=124) per min. The primary endpoint was stone-free rate at 3-month follow-up. Secondary endpoints included stone disintegration, treatment time, complications, and the rate of secondary treatments. Descriptive statistics were used to compare endpoints between the two groups. Adjusted odds ratios and 95% confidence intervals were calculated to assess predictors of success. RESULTS The stone-free rate at 3 months was significantly higher in patients who underwent ESWL at a SW delivery rate of 90 pulses per min than in those receiving 60 pulses (91% vs. 80%, p=0.01). Patients with proximal and mid-ureter stones, but not those with distal ureter stones, accounted for the observed difference (100% vs. 83%; p=0.005; 96% vs. 73%, p=0.03; and 81% vs. 80%, p=0.9, respectively). Treatment time, complications, and the rate of secondary treatments were comparable between the two groups. In multivariable analysis, SW delivery rate of 90 pulses per min, proximal stone location, stone density, stone size and the absence of an indwelling JJ stent were independent predictors of success. CONCLUSIONS Optimization of ESWL delivery rates can achieve excellent results for ureteral stones.
Resumo:
BACKGROUND Painful cutaneous injection site reactions may hamper treatment with interferon β (IFN-β) and glatiramer acetate (GA) in multiple sclerosis (MS) patients. OBJECTIVE To maintain therapy adherence, efficient therapeutic modalities for these subcutaneous inflammatory lesions are urgently needed. We tested the application of local extracorporeal shock wave therapy (ESWT). METHODS We applied 5 sessions of ESWT to 8 patients suffering from MS who had developed painful panniculitis at the injection sites of either IFN-β or GA. Clinical outcomes, i.e. pain reduction and regression of induration, were assessed 3 and 6 months after completion of the ESWT using a visual analogue score. RESULTS All patients showed both significant pain reduction and reduction of the skin induration in the treated lesions, while in untreated control lesions there was no improvement. CONCLUSION ESWT proved to be a non-invasive, safe and efficient physical treatment modality for injection-induced painful cutaneous side effects of disease-modifying drugs in MS. © 2014 S. Karger AG, Basel.
Resumo:
We report a new analysis of data from a multi-year study, some of which were previously published in the current journal. A longitudinal sample of 380 computer specialists was followed over two years, yielding three measures each of job satisfaction, organizational commitment, and turnover intentions, as well as actual turnover, and reasons for leaving, at Times 2 and 3. Career paths were more diverse than the classical distinction between stayers and leavers implies. Furthermore, although the largest single group of leavers cited “push” reasons, conforming to the classical withdrawal model, a sizable number were attracted to another job (“pull motivation”). In a three-wave structural equation model, job (dis)satisfaction predicted turnover, while organizational commitment exerted its influence only via its association with job satisfaction. As expected, however, attitudes predicted turnover only for participants with push motivation. Quitting, in turn, predicted an improvement in both satisfaction and commitment, indicating that it paid off for the individual. The necessity to study consequences of turnover and to distinguish between different subgroups of stayers and leavers is emphasized.
Resumo:
We integrated research on the dimensionality of career success into social-cognitive career theory and explored the positive feedback loop between occupational self-efficacy and objective and subjective career success over time (self-efficacy → objective success → subjective success → self-efficacy). Furthermore, we theoretically accounted for synchronous and time-lagged effects, as well as indirect reciprocity between the variables. We tested the proposed model by means of longitudinal structural equation modeling in a 9-year four-wave panel design, by applying a model comparison approach and indirect effect analyses (N = 608 professionals). The findings supported the proposed positive feedback loop between occupational self-efficacy and career success. Supporting our time-based reasoning, the findings showed that unfolding effects between occupational self-efficacy and objective career success take more time (i.e., time-lagged or over time) than unfolding effects between objective and subjective career success, as well as between subjective career success and occupational self-efficacy (i.e., synchronous or concurrently). Indirect effects of past on future occupational self-efficacy via objective and subjective career success were significant, providing support for an indirect reciprocity model. Results are discussed with respect to extensions of social-cognitive career theory and occupational self-efficacy development over time.
Resumo:
Previous research supports the vulnerability model of low self-esteem and depression, which states that low self-esteem operates as a prospective risk factor for depression. However, it is unclear which processes mediate the effect of low self-esteem. To test for the mediating effect of rumination, the authors used longitudinal mediation models, which included exclusively prospective effects and controlled for autoregressive effects of the constructs. Data came from 663 individuals (aged 16 to 62 years), who were assessed 5 times over an 8-month period. The results indicated that low self-esteem predicted subsequent rumination, which in turn predicted subsequent depression, and that rumination partially mediated the prospective effect of low self-esteem on depression. These findings held for both men and women, and for both affective-cognitive and somatic symptoms of depression. Future studies should test for the mediating effects of additional intrapersonal and interpersonal processes.
Resumo:
The ground-based microwave radiometer MIAWARA-C recorded the upper stratospheric and lower mesospheric water vapour distribution continuously from June 2011 to March 2013 above the Arctic station of Sodankylä, Finland (67.4° N, 26.6° E) without major interruptions and offers water vapour profiles with temporal resolution of 1 h for average conditions. The water vapour time series of MIAWARA-C shows strong periodic variations in both summer and winter related to the quasi-2-day wave. Above 0.1 hPa the amplitudes are strongest in summer. The stratospheric wintertime 2-day wave is pronounced for both winters on altitudes below 0.1 hPa and reaches a maximum amplitude of 0.8 ppmv in November 2011. Over the measurement period, the instrument monitored the changes in water vapour linked to two sudden stratospheric warmings in early 2012 and 2013. Based on the water vapour measurements, the descent rate in the vortex after the warmings is 364 m d−1 for 2012 and 315 m d−1 for 2013.
Resumo:
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.
Resumo:
We present the third-order QCD prediction for the production of top antitop quark pairs in electron-positron collisions close to the threshold in the dominant S-wave state. We observe a significant reduction of the theoretical uncertainty and discuss the sensitivity to the top quark mass and width.