934 resultados para water recirculating system
Resumo:
Urotensin-II controls ion/water homeostasis in fish and vascular tone in rodents. We hypothesised that common genetic variants in urotensin-II pathway genes are associated with human blood pressure or renal function. We performed family-based analysis of association between blood pressure, glomerular filtration and genes of the urotensin-II pathway (urotensin-II, urotensin-II related peptide, urotensin-II receptor) saturated with 28 tagging single nucleotide polymorphisms in 2024 individuals from 520 families; followed by an independent replication in 420 families and 7545 unrelated subjects. The expression studies of the urotensin-II pathway were carried out in 97 human kidneys. Phylogenetic evolutionary analysis was conducted in 17 vertebrate species. One single nucleotide polymorphism (rs531485 in urotensin-II gene) was associated with adjusted estimated glomerular filtration rate in the discovery cohort (p = 0.0005). It showed no association with estimated glomerular filtration rate in the combined replication resource of 8724 subjects from 6 populations. Expression of urotensin-II and its receptor showed strong linear correlation (r = 0.86, p<0.0001). There was no difference in renal expression of urotensin-II system between hypertensive and normotensive subjects. Evolutionary analysis revealed accumulation of mutations in urotensin-II since the divergence of primates and weaker conservation of urotensin-II receptor in primates than in lower vertebrates. Our data suggest that urotensin-II system genes are unlikely to play a major role in genetic control of human blood pressure or renal function. The signatures of evolutionary forces acting on urotensin-II system indicate that it may have evolved towards loss of function since the divergence of primates.
Resumo:
Intrusion of deicing materials and surface water into concrete bridge decks is a main contributor in deck reinforcing steel corrosion and concrete delamination. Salt, spread on bridge decks to melt ice, dissolves in water and permeates voids in the concrete deck. When the chloride content of the concrete in contact with reinforcing steel reaches a high enough concentration, the steel oxidizes. In Iowa, the method used to reduce bridge deck chloride penetration is the application of a low slump dense concrete overlay after the completion of all Class A and Class B floor repairs. A possible alternative to the use of dense concrete overlays, developed by Poly-Carb, Inc., is the MARK-163 FLEXOGRID Overlay System. FLEXOGRID is a two component system of epoxy and urethane which is applied on a bridge deck to a minimum thickness of ¼ inch. An aggregate mixture of silica quartz and aluminum oxide is broadcast onto the epoxy at a prescribed rate to provide deck protection and superior friction properties. The material is mixed on site and applied to the deck in a series of lifts (usually two) until the desired overlay thickness has been attained.
Resumo:
The Consolid System by American Consolid Inc. is a three product system that, according to product literature, "enables any soil, found anywhere, to be upgraded to achieve better characteristics necessary in improving road life and quality". Consolid was evaluated along with mixes of cement-fly ash and hydrated lime on two soils. The soils were an A-2-4(0) with zero plasticity index and an A-7-8(18) with a 31 plasticity index. American Consolid Inc. recommended an application rate of 0.10% Consolid 444 and 1.00% Conservex by dry soil weight. The application rate chosen for cement-fly ash was 5% cement and 15% fly ash and for hydrated lime it was 6.5%. Testing involved triaxial testing of specimens after water soaking, unconfined compressive strength of specimens before and after water soaking, and freeze and thaw testing of specimens after water soaking. All specimens were compacted to standard proctor at optimum moisture. The cement-fly ash treated mixes had the highest strength and durability followed by the hydrated lime treated mixes.
Resumo:
A statewide study was performed to develop regional regression equations for estimating selected annual exceedance- probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedanceprobability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized leastsquares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized leastsquares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.
Resumo:
The objective of this project has been to identify best practices and approaches to Municipal Separate Storm Sewer System (MS4) program planning for the Iowa Department of Transportation. Information is primarily based on existing state MS4 programs as examples and references for use as an agency-based MS4 program is developed.
Resumo:
Introduction: As part of the roadside development along the Interstate Highway System, the Iowa State Highway Commission has constructed eight pair of rest area facilities. Furthermore, two pair are presently under construction with an additional two pair proposed for letting in 1967. An additional nine and one-half pairs of rest areas are in the planning phase, a grand total of 45 rest Brea buildings. The facilities existing were planned and designed in a relatively short period of time. The rest area facilities are unusual in terms of water use, water demand rates, and the fact that there are no applicable guidelines from previous installations. Such facilities are a pioneering effort to furnish a service -which the travelling public desires and will use. The acceptance and current use of the existing facilities shows that the rest areas do provide a service the public will use and appreciate. The Iowa State Highway Commission is to be congratulated for this· pioneering effort. However there are problems, as should be expected when design of a new type of facility has no past operating experience to use as a guide. Another factor which enters is that a rest area facility is quite different and rather unrelated to engineering in the highway field of practice. Basically, the problems encountered can be resolved into several areas, namely 1) maintenance problems in equipment due to 2) insufficient capacity of several other elements of the water systems, and 3) no provisions for water quality control. This study and report is supposed to essentially cover the review of the rest areas, either existing and under construction or letting. However, the approach used has been somewhat different. Several basic economically feasible water system schemes have been developed which are· adaptable to the different well capacities and different water qualities encountered. These basic designs are used as a guide in recommending modifications to the existing rest area water systems, anticipating that the basic designs will be used for future facilities. The magnitude of the problems involved is shown by the fact that the projected water use and demand variations of each rest area building is equivalent to the water supply for a community of about 100 people. The problems of proper operation and maintenance of an eventual thirty to forty-five such facilities are gigantic. For successful operation the rest area water systems must have a high degree of standardization and interchangeability of all elements of the water systems, even if it means a limited degree of over-design in some rest area facilities.
Resumo:
Mountainous areas are often covered by little evolved soils from which deposited radionuclides can potentially leak into the vadose zone. In the Swiss Jura mountains, we observed unusual isotopic ratios of nuclear weapon test (NWTs) fallout with an apparent loss of NWTs plutonium relative to &supl;³⁷Cs of Chernobyl origin in thinner soils. Here, we studied the karstic watershed of a vauclusian spring to determine the residence times of plutonium, ²⁴&supl;Am, and ⁹⁰Sr deposited by global fallout and their respective mobility in carbonaceous soils. The results show that ⁹⁰Sr is washed most efficiently from the watershed with a residence time of several hundred years. The estimated plutonium residence time is more than 10 times higher (in the range of 5000-10,000 years), and the ²⁴&supl;Am residence time is double that of plutonium. The spring water ²⁴&supl;Am/²³⁹+²⁴⁰Pu isotopic ratio is lower (0.12 - 0.28) than found in watershed soils (0.382 ± 0.077). Similar differences are found in aquatic mosses (²⁴&supl;Am/²³⁹+²⁴⁰Pu isotopic ratio 0.05-0.12), which are permanently submerged in spring waters. In contrast to plutonium, ⁹⁰Sr is leached from these mosses with 0.5M HCl, demonstrating that strontium is probably associated with calcium carbonate precipitations on the mosses. The higher plutonium to americium isotopic ratio found in the samples of spring water and mosses at the outlet of the karst shows that plutonium mobility is enhanced.
Resumo:
This work aimed at determining the dissolved oxygen consumption rate of Litopenaeus vannamei juveniles maintained in a microbial biofloc raceway system at high density with no aeration. Three 4 L bottles were filled for each treatment, sealed hermetically, and placed in an enclosed greenhouse raceway system. Four shrimp (13.2±1.42 g) were assigned to two sets of the bottles, which underwent the following treatments: light conditions with no shrimp; dark conditions with no shrimp; light conditions with shrimp; and dark conditions with shrimp. Dissolved oxygen content was measured every 10 min for 30 min. A quadratic behavior was observed in dissolved oxygen concentration over time. Significant differences for oxigen consumption were observed only at 10 and 20 min between shrimp maintained in the dark and those under light conditions. At 10 min, a higher value was observed in shrimp maintained under light, and at 20 min, in the dark. Significant differences between 10 and 20 min and between 10 and 30 min were observed when oxygen consumption was analyzed over time in the presence of light. Under dark conditions there were significant differences only between 20 and 30 min. Lethal oxygen concentration (0.65 mg L-1) would be reached in less than one hour either under light or dark conditions with no aeration.
Resumo:
The Water Framework Directive (WFD) defines common objectives for water resources throughout the European Union (EU). Given this general approach to water preservation and water policy, the objective of this paper is to analyse whether common patterns of water consumption exist within Europe. In particular, our study uses two methods to reveal the reasons behind sectoral water use in all EU countries. The first method is based on an accounting indicator that calculates the water intensity of an economy as the sum of sectoral water intensities. The second method is a subsystem input‐output model that divides total water use into different income channels within the production system. The application uses data for the years 2005 and 2009 on water consumption in the production system of the 27 countries of the EU. From our analysis it emerges that EU countries are characterized by very different patterns of water consumption. In particular water consumption by the agriculture sector is extremely high in Central/Eastern Europe, relative to the rest of Europe. In most countries, the water used by the fuel, power and water sector is consumed to satisfy domestic final demand. However, our analysis shows that for some countries exports from this sector are an important driver of water consumption. Focusing on the agricultural sector, the decomposition analysis suggests that water usage in Mediterranean countries is mainly driven by final demand for, and exports of, agricultural products. In Central/Eastern Europe domestic final demand is the main driver of water consumption, but in this region the proportion of water use driven by demand for exports is increasing over time. Given these heterogeneous water consumption patterns, our analysis suggests that Mediterranean and Central/Eastern European countries should adopt specific water policies in order to achieve efficient levels of water consumption in the European Union. JEL codes: N5; C67 Keywords: Water use, Subsystem input–output model; Water intensity, European Union.
Resumo:
The Mitchell County Soil and Water Conservation District is applying on behalf of the incorporated community of Carpenter to construct a wastewater collection and treatment system to assist in the environmental cleanup and protection of Deer Creek. IDNR water monitoring of the community tile line has shown consistently elevated levels of fecal coliform bacteria indicating the presence of untreated sewage water. These are obvious health threats to the downstream users and wildlife in Deer Creek and the Cedar River. A new sewer system for the community of Carpenter will eliminate illegal discharges into the creed and be the first step in the overall protection of the stream.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy
Resumo:
The 1985 State Water Plan was prepared by the Department of Water, Air and Waste Management in response to a 1982 legislative mandate. The report contains recommendations for conservation, priority allocation system, mechanisms to define shortage and initiate the allocation system, better define beneficial use and improving daily management of water rights, well interference and compensation, and groundwater protection strategy.
Resumo:
The hydrogeological properties and responses of a productive aquifer in northeastern Switzerland are investigated. For this purpose, 3D crosshole electrical resistivity tomography (ERT) is used to define the main lithological structures within the aquifer (through static inversion) and to monitor the water infiltration from an adjacent river. During precipitation events and subsequent river flooding, the river water resistivity increases. As a consequence, the electrical characteristics of the infiltrating water can be used as a natural tracer to delineate preferential flow paths and flow velocities. The focus is primarily on the experiment installation, data collection strategy, and the structural characterization of the site and a brief overview of the ERT monitoring results. The monitoring system comprises 18 boreholes each equipped with 10 electrodes straddling the entire thickness of the gravel aquifer. A multi-channel resistivity system programmed to cycle through various four-point electrode configurations of the 180 electrodes in a rolling sequence allows for the measurement of approximately 15,500 apparent resistivity values every 7 h on a continuous basis. The 3D static ERT inversion of data acquired under stable hydrological conditions provides a base model for future time-lapse inversion studies and the means to investigate the resolving capability of our acquisition scheme. In particular, it enables definition of the main lithological structures within the aquifer. The final ERT static model delineates a relatively high-resistivity, low-porosity, intermediate-depth layer throughout the investigated aquifer volume that is consistent with results from well logging and seismic and radar tomography models. The next step will be to define and implement an appropriate time-lapse ERT inversion scheme using the river water as a natural tracer. The main challenge will be to separate the superposed time-varying effects of water table height, temperature, and salinity variations associated with the infiltrating water.
Resumo:
The objective of this work was to evaluate the root system distribution and the yield of 'Conilon' coffee (Coffea canephora) propagated by seeds or cuttings. The experiment was carried out with 2x1 m spacing, in an Oxisol with sandy clay loam texture. A randomized complete block design was used, following a 2x9x6 factorial arrangement, with two propagation methods (seeds and cuttings), nine sampling spacings (0.15, 0.30, 0.45, 0.60, 0.75, and 0.90 m between rows, and 0.15, 0.30, and 0.45 between plants within rows), six soil depths (0.10-0.20, 0.20-0.30, 0.30-0.40, 0.40-0.50, and 0.50-0.60 m), and six replicates. Soil cores (27 cm3) with roots were taken from 12 experimental units, 146 months after planting. The surface area of the root system and root diameter, length, and volume were assessed for 13 years and, then, correlated with grain yield. The highest fine root concentration occurred at the superficial soil layers. The variables used to characterize the root system did not differ between propagation methods. Moreover, no differences were observed for net photosynthetic CO2 assimilation rate, stomatal conductance, internal CO2 concentrations, and instantaneous water-use efficiency in the leaves. Cutting-propagated plants were more productive than seed-propagated ones.
Resumo:
Recently, we examined the spermatogenesis cycle length in two shrews species, Sorex araneus characterized by a very high metabolic rate and a polyandric mating system (sperm competition) resulting in a short cycle and Crocidura russula characterized by a much lower metabolic rate and a monogamous mating system showing a longer cycle. In this study, we investigated the spermatogenesis cycle in Neomys fodiens showing an intermediate metabolic rate. We described the stages of seminiferous epithelium according to the spermatid morphology method and we calculated the cycle length of spermatogenesis using incorporation of 5-bromodeoxyuridine into DNA of the germ cells. Twelve males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determination, we applied a recently developed statistical method. The calculated cycle length is 8.69 days and the total duration of spermatogenesis based on 4.5 cycles is approximately 39.1 days, intermediate between the duration of spermatogenesis of S. araneus (37.6 days) and C. russula (54.5 days) and therefore congruent with both the metabolic rate hypothesis and the sperm competition hypothesis. Relative testes size of 1.4% of body mass indicates a promiscuous mating system.