950 resultados para virulence related-genes
Resumo:
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Resumo:
There is limited information on the role of penicillin-binding proteins (PBPs) in the resistance of Acinetobacter baumannii to β-lactams. This study presents an analysis of the allelic variations of PBP genes in A. baumannii isolates. Twenty-six A. baumannii clinical isolates (susceptible or resistant to carbapenems) from three teaching hospitals in Spain were included. The antimicrobial susceptibility profile, clonal pattern, and genomic species identification were also evaluated. Based on the six complete genomes of A. baumannii, the PBP genes were identified, and primers were designed for each gene. The nucleotide sequences of the genes identified that encode PBPs and the corresponding amino acid sequences were compared with those of ATCC 17978. Seven PBP genes and one monofunctional transglycosylase (MGT) gene were identified in the six genomes, encoding (i) four high-molecular-mass proteins (two of class A, PBP1a [ponA] and PBP1b [mrcB], and two of class B, PBP2 [pbpA or mrdA] and PBP3 [ftsI]), (ii) three low-molecular-mass proteins (two of type 5, PBP5/6 [dacC] and PBP6b [dacD], and one of type 7 (PBP7/8 [pbpG]), and (iii) a monofunctional enzyme (MtgA [mtgA]). Hot spot mutation regions were observed, although most of the allelic changes found translated into silent mutations. The amino acid consensus sequences corresponding to the PBP genes in the genomes and the clinical isolates were highly conserved. The changes found in amino acid sequences were associated with concrete clonal patterns but were not directly related to susceptibility or resistance to β-lactams. An insertion sequence disrupting the gene encoding PBP6b was identified in an endemic carbapenem-resistant clone in one of the participant hospitals.
Natalizumab-related anaphylactoid reactions in MS patients are associated with HLA class II alleles.
Resumo:
OBJECTIVES We aimed to investigate potential associations between human leukocyte antigen (HLA) class I and class II alleles and the development of anaphylactic/anaphylactoid reactions in patients with multiple sclerosis (MS) treated with natalizumab. METHODS HLA class I and II genotyping was performed in patients with MS who experienced anaphylactic/anaphylactoid reactions and in patients who did not develop infusion-related allergic reactions following natalizumab administration. RESULTS A total of 119 patients with MS from 3 different cohorts were included in the study: 54 with natalizumab-related anaphylactic/anaphylactoid reactions and 65 without allergic reactions. HLA-DRB1*13 and HLA-DRB1*14 alleles were significantly increased in patients who developed anaphylactic/anaphylactoid reactions (p M-H = 3 × 10(-7); odds ratio [OR]M-H = 8.96, 95% confidence interval [CI] = 3.40-23.64), with a positive predictive value (PPV) of 82%. In contrast, the HLA-DRB1*15 allele was significantly more represented in patients who did not develop anaphylactic/anaphylactoid reactions to natalizumab (p M-H = 6 × 10(-4); ORM-H = 0.2, 95% CI = 0.08-0.50), with a PPV of 81%. CONCLUSIONS HLA-DRB1 genotyping before natalizumab treatment may help neurologists to identify patients with MS at risk for developing serious systemic hypersensitivity reactions associated with natalizumab administration.
Resumo:
Background : Port-related bloodstream infection (PRBSI) is a common complication associated with long-term use of ports systems. Systemic antimicrobial therapy (ST) and removal of the device is the standard management of PRBSI. However, a conservative management combining ST with antibiotic lock therapy (ALT) without port removal has been suggested as an alternative management option for infections due to gram-positive skin colonizers with low virulence.¦Objectives : i) to assess the frequency of management of PRBSI in onco-hematological patients by combining the ALT with ST, without catheter removal and ii) to analyze the efficacy of such an approach.¦Methods : Retrospective observational study over a 6-year period between 2005 and 2010, including patients who where diagnosed with PRBSI and who were treated with ST and ALT. PRBSI diagnosis consisted in clinical signs of bacteremia with blood cultures positive for gram-positive skin colonizers. The primary endpoint was failure to cure the PRBSI.¦Results : 61 port infections were analysed, of which 23 PRBSI met the inclusion criteria. All the patients were suffering from haematological conditions and 75% were neutropenic at the time of PRBSI diagnosis. S. epidermidis was responsible for 91% of PRBSI (21/23). The median duration of ST was 14 days (range 7-35) and the median duration of ALT was 15 days (range 8-41). Failure to cure the PRBSI requiring port removal was observed in 4 patients, but was not associated with severe infectious complications. Kaplan-Meier analysis showed a success rate in port salvage at day 180 (6 months) of 78% (95%CI 59-97%).¦Conclusion : The success rate observed in the present study suggests that combining ST and ALT is an effective option to conservatively treat PRBSI caused by pathogens of low virulence such as S. epidermidis.
Resumo:
Abstract Purpose: Age-related macular degeneration (AMD) has been associated with a number of polymorphisms in genes in the complement pathway. We examined the potential genotype-phenotype correlation of complement factor B (CFB) (R32Q) polymorphisms in Caucasian patients with AMD. Methods: Data from a Central European cohort of 349 patients with early AMD in at least one eye were analyzed for potential associations of the CFB (R32Q/rs641153) polymorphism with phenotypic features of early AMD. Early AMD was classified according to the International Classification and Grading System into predominant drusen size, largest drusen, drusen covered surface, central or ring-like location, peripheral drusen, and pigmentary changes. The potential association with single nucleotide polymorphisms on CFB (R32Q/rs641153) was evaluated for all patients, corrected for age, sex, and the polymorphisms of CFH (Y402H) and ARMS2 (A69S). Results: CFB (R32Q) polymorphisms showed a significant association with smaller drusen size (largest drusen ≤250 µm, p = 0.021, predominant drusen ≤125 µm, p = 0.016), with smaller surface covered by drusen (≤10%; p = 0.02), and with more frequent occurrence of peripheral drusen (p = 0.007). No association was found for pigmentary changes. Conclusions: The CFB (R32Q) polymorphism was associated with AMD characterized by small drusen only, and appeared to be protective of large drusen (OR 0.48/0.45) and of larger drusen covered area (OR 0.34). Furthermore, peripheral drusen were more frequently found (OR 2.27). This result supports the role of complement components and their polymorphisms in drusen formation and may enable a better understanding of AMD pathogenesis.
Resumo:
Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.
Resumo:
Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.
Resumo:
With the widespread availability of high-throughput sequencing technologies, sequencing projects have become pervasive in the molecular life sciences. The huge bulk of data generated daily must be analyzed further by biologists with skills in bioinformatics and by "embedded bioinformaticians," i.e., bioinformaticians integrated in wet lab research groups. Thus, students interested in molecular life sciences must be trained in the main steps of genomics: sequencing, assembly, annotation and analysis. To reach that goal, a practical course has been set up for master students at the University of Lausanne: the "Sequence a genome" class. At the beginning of the academic year, a few bacterial species whose genome is unknown are provided to the students, who sequence and assemble the genome(s) and perform manual annotation. Here, we report the progress of the first class from September 2010 to June 2011 and the results obtained by seven master students who specifically assembled and annotated the genome of Estrella lausannensis, an obligate intracellular bacterium related to Chlamydia. The draft genome of Estrella is composed of 29 scaffolds encompassing 2,819,825 bp that encode for 2233 putative proteins. Estrella also possesses a 9136 bp plasmid that encodes for 14 genes, among which we found an integrase and a toxin/antitoxin module. Like all other members of the Chlamydiales order, Estrella possesses a highly conserved type III secretion system, considered as a key virulence factor. The annotation of the Estrella genome also allowed the characterization of the metabolic abilities of this strictly intracellular bacterium. Altogether, the students provided the scientific community with the Estrella genome sequence and a preliminary understanding of the biology of this recently-discovered bacterial genus, while learning to use cutting-edge technologies for sequencing and to perform bioinformatics analyses.
Resumo:
Background: It is well known that the pattern of linkage disequilibrium varies between human populations, with remarkable geographical stratification. Indirect association studies routinely exploit linkage disequilibrium around genes, particularly in isolated populations where it is assumed to be higher. Here, we explore both the amount and the decay of linkage disequilibrium with physical distance along 211 gene regions, most of them related to complex diseases, across 39 HGDP-CEPH population samples, focusing particularly on the populations defined as isolates. Within each gene region and population we use r2 between all possible single nucleotide polymorphism (SNP) pairs as a measure of linkage disequilibrium and focus on the proportion of SNP pairs with r2 greater than 0.8.Results: Although the average r2 was found to be significantly different both between and within continental regions, a much higher proportion of r2 variance could be attributed to differences between continental regions (2.8% vs. 0.5%, respectively). Similarly, while the proportion of SNP pairs with r2 > 0.8 was significantly different across continents for all distance classes, it was generally much more homogenous within continents, except in the case of Africa and the Americas. The only isolated populations with consistently higher LD in all distance classes with respect to their continent are the Kalash (Central South Asia) and the Surui (America). Moreover, isolated populations showed only slightly higher proportions of SNP pairs with r2 > 0.8 per gene region than non-isolated populations in the same continent. Thus, the number of SNPs in isolated populations that need to be genotyped may be only slightly less than in non-isolates. Conclusion: The "isolated population" label by itself does not guarantee a greater genotyping efficiency in association studies, and properties other than increased linkage disequilibrium may make these populations interesting in genetic epidemiology.
Resumo:
Pneumocystis jirovecii is a fungus belonging to a basal lineage of the Ascomycotina, the Taphrinomycotina subphylum. It is a parasite specific to humans that dwells primarily in the lung and can cause severe pneumonia in individuals with debilitated immune system. Despite its clinical importance, many aspects of its biology remain poorly understood, at least in part because of the lack of a continuous in vitro cultivation system. The present thesis consists in the genome reconstruction and comparative genomics of P. jirovecii. It is made of three parts: (i) the de novo sequencing of P. jirovecii genome starting from a single broncho- alveolar lavage fluid of a single patient (ii) the de novo sequencing of the genome of the plant pathogen Taphrina deformans, a fungus closely related to P. jirovecii, and (iii) the genome scale comparison of P. jirovecii to other Taphrinomycotina members. Enrichment in P. jirovecii cells by immuno-precipitation, whole DNA random amplification, two complementary high throughput DNA sequencing methods, and in silico sorting and assembly of sequences were used for the de novo reconstruction of P. jirovecii genome from the microbiota of a single clinical specimen. An iterative ad hoc pipeline as well as numerical simulations was used to recover P. jirovecii sequences while purging out contaminants and assembly or amplification chimeras. This strategy produced a 8.1 Mb assembly, which encodes 3,898 genes. Homology searches, mapping on biochemical pathways atlases, and manual validations revealed that this genome lacks (i) most of the enzymes dedicated to the amino acids biosyntheses, and (ii) most virulence factors observed in other fungi, e.g. the glyoxylate shunt pathway and specific peptidases involved in the degradation of the host cell membrane. The same analyses applied to the available genomic sequences from Pneumocystis carinii the species infecting rats and Pneumocystis murina the species infecting mice revealed the same deficiencies. The genome sequencing of T. deformans yielded a 13 Mb assembly, which encodes 5,735 genes. T. deformans possesses enzymes involved plant cell wall degradation, secondary metabolism, the glyoxylate cycle, detoxification, sterol biosynthesis, as well as the biosyntheses of plant hormones such as abscisic acid or indole-3-acetic acid. T. deformans also harbors gene subsets that have counterparts in plant saprophytes or pathogens, which is consistent with its alternate saprophytic and pathogenic lifestyles. Mating genes were also identified. The homothallism of this fungus suggests a mating-type switching mechanism. Comparative analyses indicated that 81% of P. jirovecii genes are shared with eight other Taphrinomycotina members, including T. deformans, P. carinii and P. murina. These genes are mostly involved in housekeeping activities. The genes specific to the Pneumocystis genus represent 8%, and are involved in RNA metabolism and signaling. The signaling is known to be crucial for interaction of Pneumocystis spp with their environment. Eleven percent are unique to P. jirovecii and encode mostly proteins of unknown function. These genes in conjunction with other ones (e.g. the major surface glycoproteins) might govern the interaction of P. jirovecii with its human host cells, and potentially be responsible of the host specificity. P. jirovecii exhibits a reduced genome in size with a low GC content, and most probably scavenges vital compounds such as amino acids and cholesterol from human lungs. Consistently, its genome encodes a large set of transporters (ca. 22% of its genes), which may play a pivotal role in the acquisition of these compounds. All these features are generally observed in obligate parasite of various kingdoms (bacteria, protozoa, fungi). Moreover, epidemiological studies failed to evidence a free-living form of the fungus and Pneumocystis spp were shown to co-evolved with their hosts. Given also the lack of virulence factors, our observations strongly suggest that P. jirovecii is an obligate parasite specialized in the colonization of human lungs, and which causes disease only in individuals with compromised immune system. The same conclusion is most likely true for all other Pneumocystis spp in their respective mammalian host. - Pneumocystis jirovecii est un champignon appartenant à ine branche basale des Ascomycotina, le sous-embranchement des Taphrinomycotina. C'est un parasite spécifique aux humains qui réside principalement dans les poumons, et qui peut causer des pneumonies sévères chez des individus ayant un système immunitaire déficient. En dépit de son importance clinique, de nombreux aspects de sa biologie demeurent,largement méconnus, au moins en partie à cause de l'absence d'un système de culture in vitro continu. Cette thèse traite de la reconstruction du génome et de la génomique comparative de P. jirovecii. Elle comporte trois parties: (i) le séquençage de novo du génome de P. jirovecii à partir d'un lavage broncho-alvéolaire provenant d'un seul patient, (ii) le séquençage de novo du génome d'un champignon pathogène de plante Taphrina deformans qui est phylogénétiquement proche de P. jirovecii, et (iii) la comparaison du génome de P. jirovecii à celui d'autres membres du sous-embranchement des Taphrinomycotina. Un enrichissement en cellules de P. jirovecii par immuno-précipitation, une amplification aléatoire des molécules d'ADN, deux méthodes complémentaires de séquençage à haut débit, un tri in silico et un assemblage des séquences ont été utilisés pour reconstruire de novo le génome de P. jirovecii à partir du microbiote d'un seul échantillon clinique. Un pipeline spécifique ainsi que des simulations numériques ont été utilisés pour récupérer les séquences de P. jirovecii tout en éliminant les séquences contaminants et les chimères d'amplification ou d'assemblage. Cette stratégie a produit un assemblage de 8.1 Mb, qui contient 3898 gènes. Les recherches d'homologies, de cartographie des voies métaboliques et des validations manuelles ont révélé que ce génome est dépourvu (i) de la plupart des enzymes dédiées à la biosynthèse des acides aminés, et (ii) de la plupart des facteurs de virulence observés chez d'autres champignons, par exemple, le cycle du glyoxylate ainsi que des peptidases spécifiques impliquées dans la dégradation de la membrane de la cellule hôte. Les analyses appliquées aux données génomiques disponibles de Pneumocystis carinii, l'espèce infectant les rats, et de Pneumocystis murina, l'espèce infectant les souris, ont révélé les mêmes déficiences. Le séquençage du génome de T. deformans a généré un assemblage de 13.3 Mb qui contient 5735 gènes. T. deformans possède les gènes codant pour les enzymes impliquées dans la dégradation des parois cellulaires des plantes, le métabolisme secondaire, le cycle du glyoxylate, la détoxification, la biosynthèse des stérols ainsi que la biosynthèse d'hormones de plantes telles que l'acide abscissique ou l'acide indole 3-acétique. T. deformans possède également des sous-ensembles de gènes présents exclusivement chez des saprophytes ou des pathogènes de plantes, ce qui est consistent avec son mode de vie alternatif saprophyte et pathogène. Des gènes impliqués dans la conjugaison ont été identifiés. L'homothallisme de ce champignon suggère mécanisme de permutation du type conjuguant. Les analyses comparatives ont démontré que 81% des gènes de P. jirovecii sont présent chez les autres membres du sous-embranchement des Taphrinomycotina. Ces gènes sont essentiellement impliqués dans le métabolisme basai. Les gènes spécifiques au genre Pneumocystis représentent 8%, et sont impliqués dans le métabolisme de l'ARN et la signalisation. La signalisation est connue pour être cruciale pour l'interaction des espèces de Pneumocystis avec leur environnement. Les gènes propres à P. jirovecii représentent 11% et codent en majorité pour des protéines dont la fonction est inconnue. Ces gènes en conjonction avec d'autres (par exemple, les glycoprotéines de surface), pourraient être déterminants dans l'interaction de P. jirovecii avec les cellules de l'hôte humain, et être potentiellement responsable de la spécificité d'hôte. P. jirovecii possède un génome de taille réduite à faible pourcentage en GC et récupère très probablement des composés vitaux comme les acides aminés et le cholestérol à partir des poumons humains. De manière consistante, son génome code pour de nombreux transporteurs (22% de ses gènes), qui pourraient jouer un rôle essentiel dans l'acquisition de ces composés. Ces caractéristiques sont généralement observées chez les parasites obligatoires de plusieurs règnes (bactéries, protozoaires, champignons). De plus, les études épidémiologiques n'ont pas réussi à prouver l'existence d'ime forme vivant librement du champignon. Etant donné également l'absence de facteurs de virulence, nos observations suggèrent que P. jirovecii est un parasite obligatoire spécialisé dans la colonisation des poumons humains, ne causant une maladie que chez des individus ayant un système immunitaire compromis. La même conclusion est très probablement applicable à toutes les autres espèces de Pneumocystis dans leur hôte mammifère respectif.
Resumo:
Background: Single Nucleotide Polymorphisms, among other type of sequence variants, constitute key elements in genetic epidemiology and pharmacogenomics. While sequence data about genetic variation is found at databases such as dbSNP, clues about the functional and phenotypic consequences of the variations are generally found in biomedical literature. The identification of the relevant documents and the extraction of the information from them are hampered by the large size of literature databases and the lack of widely accepted standard notation for biomedical entities. Thus, automatic systems for the identification of citations of allelic variants of genes in biomedical texts are required. Results: Our group has previously reported the development of OSIRIS, a system aimed at the retrieval of literature about allelic variants of genes http://ibi.imim.es/osirisform.html. Here we describe the development of a new version of OSIRIS (OSIRISv1.2, http://ibi.imim.es/OSIRISv1.2.html webcite) which incorporates a new entity recognition module and is built on top of a local mirror of the MEDLINE collection and HgenetInfoDB: a database that collects data on human gene sequence variations. The new entity recognition module is based on a pattern-based search algorithm for the identification of variation terms in the texts and their mapping to dbSNP identifiers. The performance of OSIRISv1.2 was evaluated on a manually annotated corpus, resulting in 99% precision, 82% recall, and an F-score of 0.89. As an example, the application of the system for collecting literature citations for the allelic variants of genes related to the diseases intracranial aneurysm and breast cancer is presented. Conclusion: OSIRISv1.2 can be used to link literature references to dbSNP database entries with high accuracy, and therefore is suitable for collecting current knowledge on gene sequence variations and supporting the functional annotation of variation databases. The application of OSIRISv1.2 in combination with controlled vocabularies like MeSH provides a way to identify associations of biomedical interest, such as those that relate SNPs with diseases.
Resumo:
During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.
Resumo:
This analysis is a follow-up to an earlier investigation of 182 genes selected as likely candidate genetic variations conferring susceptibility to anorexia nervosa (AN). As those initial case-control results revealed no statistically significant differences in single nucleotide polymorphisms, herein, we investigate alternative phenotypes associated with AN. In 1762 females, using regression analyses, we examined the following: (i) lowest illness-related attained body mass index; (ii) age at menarche; (iii) drive for thinness; (iv) body dissatisfaction; (v) trait anxiety; (vi) concern over mistakes; and (vii) the anticipatory worry and pessimism versus uninhibited optimism subscale of the harm avoidance scale. After controlling for multiple comparisons, no statistically significant results emerged. Although results must be viewed in the context of limitations of statistical power, the approach illustrates a means of potentially identifying genetic variants conferring susceptibility to AN because less complex phenotypes associated with AN are more proximal to the genotype and may be influenced by fewer genes. Copyright © 2011 John Wiley & Sons, Ltd and Eating Disorders Association.
Resumo:
Wounded leaves communicate their damage status to one another through a poorly understood process of long-distance signalling. This stimulates the distal production of jasmonates, potent regulators of defence responses. Using non-invasive electrodes we mapped surface potential changes in Arabidopsis thaliana after wounding leaf eight and found that membrane depolarizations correlated with jasmonate signalling domains in undamaged leaves. Furthermore, current injection elicited jasmonoyl-isoleucine accumulation, resulting in a transcriptome enriched in RNAs encoding key jasmonate signalling regulators. From among 34 screened membrane protein mutant lines, mutations in several clade 3 GLUTAMATE RECEPTOR-LIKE genes (GLRs 3.2, 3.3 and 3.6) attenuated wound-induced surface potential changes. Jasmonate-response gene expression in leaves distal to wounds was reduced in a glr3.3 glr3.6 double mutant. This work provides a genetic basis for investigating mechanisms of long-distance wound signalling in plants and indicates that plant genes related to those important for synaptic activity in animals function in organ-to-organ wound signalling.
Resumo:
1.1 AbstractThe treatment of memory disorders and cognitive deficits in various forms of mental retardation may greatly benefit from a better understanding of the molecular and cellular mechanisms of memory formation. Different forms of memory have distinct molecular requirements.Short-term memory (STM) is thought to be mediated by covalent modifications of existing synaptic molecules, such as phosphorylation or dephosphorylation of enzymes, receptors or ion channels. In contrast, long-term memoiy (LTM) is thought to be mediated by growth of new synapses and restructuring of existing synapses. There is extensive evidence that changes in gene expression and de novo protein synthesis are key processes for LTM formation. In this context, the transcription factor CREB (cAMP-response element-binding protein) was shown to be crucial. Activation of CREB requires phosphorylation of a serine residue (Ser-133), and the subsequent recruitment of a coactivator called CREB-binding protein (CBP). Moreover, we have recently shown that another coactivator called CREB Regulated Transcription Coactivator 1 (CRTC1) functions as a calcium- and cAMP-sensitive coincidence detector in neurons, and is involved in hippocampal long-term synaptic plasticity. Given the importance of cAMP and calcium signaling for plasticity-related gene expression in neurons and in astrocytes, we sought to determine the respective involvement of the CREB coactivators CBP and CRTC1 in CREB-mediated transcription.We developed various strategies to selectively interfere with these CREB coactivators in mouse primary neurons and in astrocytes in vitro. However, despite several pieces of evidence implicating CBP and/or CRTC1 in the regulation of neuronal plasticity genes, we could not clearly determine the respective requirement of these coactivators for the activation of these genes. Nevertheless, we showed that calcineurin activity, which is important for CRTC1 nuclear translocation, is necessary for the expression of some CREB-regulated plasticity genes. We associated this phenomena to physiopathological conditions observed in Down's syndrome. In addition, we demonstrated that in astrocytes, noradrenaline stimulates CREB-target gene expression through β-adrenergic receptor activation, intracellular cAMP pathway activation, and CRTC-induced CREB transactivation.Defining the respective role of CREB and its coactivators CBP and CRTC1 in neuronal and astrocytic cultures in vitro sets the stage for future in vivo studies and for the possible development of new therapeutic strategies to improve the treatment of memoiy and cognitive disorders.1.2 RésuméUne meilleure connaissance des mécanismes moléculaires et cellulaires responsables de la formation de la mémoire pourrait grandement améliorer le traitement des troubles de la mémoire ainsi que des déficits cognitifs observés dans différentes formes de pathologies psychiatriques telles que le retard mental. Les différentes formes de mémoire dépendent de processus moléculaires différents.La mémoire à court terme (STM) semble prendre forme suite à des modifications covalentes de molécules synaptiques préexistantes, telles que la phosphorylation ou la déphosphorylation d'enzymes, de récepteurs ou de canaux ioniques. En revanche, la mémoire à long terme (LTM) semble être due à la génération de nouvelles synapses et à la restructuration des synapses existantes. De nombreuses études ont permis de démontrer que les changements dans l'expression des gènes et la synthèse de protéine de novo sont des processus clés pour la formation de la LTM. Dans ce contexte, le facteur de transcription CREB (cAMP-response element-binding protein) s'est avéré être un élément crucial. L'activation de CREB nécessite la phosphorylation d'un résidu sérine (Ser-133), et le recrutement d'un coactivateur nommé CBP (CREB binding protein). En outre, nous avons récemment démontré qu'un autre coactivateur de CREB nommé CRTC1 (CREB Regulated Transcription Coactivator 1) agit comme un détecteur de coïncidence de l'AMP cyclique (AMPc) et du calcium dans les neurones et qu'il est impliqué dans la formation de la plasticité synaptique à long terme dans l'hippocampe. Etant donné l'importance des voies de l'AMPc et du calcium dans l'expression des gènes impliqués dans la plasticité cérébrale, nous voulions déterminer le rôle respectif des coactivateurs de CREB, CBP et CRTC1.Nous avons développé diverses stratégies pour interférer de façon sélective avec les coactivateurs de CREB dans les neurones et dans les astrocytes chez la souris in vitro. Nos résultats indiquent que CBP et CRTC1 sont tous deux impliqués dans la transcription dépendante de CREB induite par l'AMPc et le calcium dans les neurones. Cependant, malgré plusieurs évidences impliquant CBP et/ou CRTC1 dans l'expression de gènes de plasticité neuronale, nous n'avons pas pu déterminer clairement leur nécessité respective pour l'activation de ces gènes. Toutefois, nous avons montré que l'activité de la calcineurine, dont dépend la translocation nucléaire de CRTC1, est nécessaire à l'expression de certains de ces gènes. Nous avons pu associer ce phénomène à une condition physiopathologique observée dans le syndrome de Down. Nous avons également montré que dans les astrocytes, la noradrénaline stimule l'expression de gènes cibles de CREB par une activation des récepteurs β- adrénergiques, l'activation de la voie de l'AMPc et la transactivation de CREB par les CRTCs.Définir le rôle respectif de CREB et de ses coactivateurs CBP et CRTC1 dans les neurones et dans les astrocytes in vitro permettra d'acquérir les connaissances nécessaires à de futures études in vivo et, à plus long terme d'éventuellement développer des stratégies thérapeutiques pour améliorer les traitements des troubles cognitifs.