944 resultados para ultrafast optics
Resumo:
Complex amplitude encoded in any digital hologram must undergo quantization, usually in either polar or rectangular format . In this paper these two schemes are compared under the constraints and conditions inherent in digital holography . For Fourier transform holograms when the spectrum is levelled through phase coding, the rectangular format is shown to be optimal . In the absence of phase coding, and also if the amplitude spectrum has a large dynamic range, the polar format may be preferable .
Resumo:
Through an analysis using the transfer function of a pinhole camera, the multiple imaging characteristics of photographic diffusers described by Grover and Tremblay [Appl. Opt.21,4500(1982)] is studied. It is found that only one pinhole diameter satisfies the optimum imaging condition for best contrast transfer at any desired spatial frequency. A simple method of generating random pinhole arrays with a controlled pinhole diameter is described. These pinhole arrays are later used to generate high frequency sinusoidal gratings from a coarse grid. The contrast in the final gratings is found to be reasonably high.
Resumo:
Predictive models based on near infra-red spectroscopy for the assessment of fruit internal quality attributes must exhibit a degree of robustness across the parameters of variety, district and time to be of practical use in fruit grading. At the time this thesis was initiated, while there were a number of published reports on the development of near infra-red based calibration models for the assessment of internal quality attributes of intact fruit, there were no reports of the reliability ("robustness") of such models across time, cultivars or growing regions. As existing published reports varied in instrumentation employed, a re-analysis of existing data was not possible. An instrument platform, based on partial transmittance optics, a halogen light source and (Zeiss MMS 1) detector operating in the short wavelength near infra-red region was developed for use in the assessment of intact fruit. This platform was used to assess populations of macadamia kernels, melons and mandarin fruit for total soluble solids, dry matter and oil concentration. Calibration procedures were optimised and robustness assessed across growing areas, time of harvest, season and variety. In general, global modified partial least squares regression (MPLS) calibration models based on derivatised absorbance data were better than either multiple linear regression or `local' MPLS models in the prediction of independent validation populations . Robustness was most affected by growing season, relative to the growing district or variety . Various calibration updating procedures were evaluated in terms of calibration robustness. Random selection of samples from the validation population for addition to the calibration population was equivalent to or better than other methods of sample addition (methods based on the Mahalanobis distance of samples from either the centroid of the population or neighbourhood samples). In these exercises the global Mahalanobis distance (GH) was calculated using the scores and loadings from the calibration population on the independent validation population. In practice, it is recommended that model predictive performance be monitored in terms of predicted sample GH, with model updating using as few as 10 samples from the new population undertaken when the average GH value exceeds 1 .0 .
Resumo:
A novel method, designated the holographic spectrum reconstruction (HSR) method, is proposed for achieving simultaneous display of the spectrum and image of an object in a single plane. A study of the scaling behaviour of both the spectrum and the image has been carried out and based on this study, it is demonstrated that a lensless coherent optical processor can be realized.
Resumo:
In dealing with electromagnetic phenomena and in particular the phenomena of optics, despite the recognition of the quanta of light people tend to talk of the amplitudes and field strengths, as if the electromagnetic field were a classical field. For example we measure the wavelength of light by studying interference fringes. In this paper we study the inter-relationship of three ways of looking at the problem: in terms of classical wave fields, wave function of the photon; and the quantized wave field. The comparison and contrasts of these three modes of description are carefully analyzed in this paper. The ways in which these different modes complement our intuition and insight are also discussed.
Resumo:
Most bees are diurnal, with behaviour that is largely visually mediated, but several groups have made evolutionary shifts to nocturnality, despite having apposition compound eyes unsuited to vision in dim light. We compared the anatomy and optics of the apposition eyes and the ocelli of the nocturnal carpenter bee, Xylocopa tranquebarica, with two sympatric species, the strictly diurnal X. leucothorax and the occasionally crepuscular X. tenuiscapa. The ocelli of the nocturnal X. tranquebarica are unusually large (diameter ca. 1 mm) and poorly focussed. Moreover, their apposition eyes show specific visual adaptations for vision in dim light, including large size, large facets and very wide rhabdoms, which together make these eyes 9 times more sensitive than those of X. tenuiscapa and 27 times more sensitive than those of X. leucothorax. These differences in optical sensitivity are surprisingly small considering that X. tranquebarica can fly on moonless nights when background luminance is as low as 10(-5) cd m(-2), implying that this bee must employ additional visual strategies to forage and find its way back to the nest. These strategies may include photoreceptors with longer integration times and higher contrast gains as well as higher neural summation mechanisms for increasing visual reliability in dim light.
Resumo:
Purpose To provide a summary of the classic paper "Differences in the accommodation stimulus response curves of adult myopes and emmetropes" published in Ophthalmic and Physiological Optics in 1998 and to provide an update on the topic of accommodation errors in myopia. Summary The accommodation responses of 33 participants (10 emmetropes, 11 early onset myopes and 12 late onset myopes) aged 18-31 years were measured using the Canon Autoref R-1 free space autorefractor using three methods to vary the accommodation demand: decreasing distance (4 m to 0.25 cm), negative lenses (0 to -4 D at 4 m) and positive lenses (+4 to 0 D at 0.25 m). We observed that the greatest accommodation errors occurred for the negative lens method whereas minimal errors were observed using positive lenses. Adult progressing myopes had greater lags of accommodation than stable myopes at higher demands induced by negative lenses. Progressing myopes had shallower response gradients than the emmetropes and stable myopes; however the reduced gradient was much less than that observed in children using similar methods. Recent Findings This paper has been often cited as evidence that accommodation responses at near may be primarily reduced in adults with progressing myopia and not in stable myopes and/or that challenging accommodation stimuli (negative lenses with monocular viewing) are required to generate larger accommodation errors. As an analogy, animals reared with hyperopic errors develop axial elongation and myopia. Retinal defocus signals are presumably passed to the retinal pigment epithelium and choroid and then ultimately the sclera to modify eye length. A number of lens treatments that act to slow myopia progression may partially work through reducing accommodation errors.
Resumo:
We describe how an ion-exchange waveguide was used as a strip-loading region for a planar polymer waveguide. The loading strip forms an underlay that is well preserved in the substrate. Some branching-channel waveguides were formed by this method, and wall losses were measured. The result shows that the wall losses decrease as a result of strip loading.
Resumo:
Prequantization has been forwarded as a means to improve the performance of double phase holograms (DPHs). We show here that any improvement (even under the best of conditions) is not large enough to help the DPH to compete favourably with other holograms.
Resumo:
We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstructed the optical absorption coefficient mu(u) and particle diffusion coefficient D-B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g(2)(tau) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g(2)(tau) measure on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of mu(a), D-B, MSD and the viscoelastic parameters, which are presented, show reasonable good position and quantitative accuracy.
Resumo:
Gaussian-beam-type solutions to the Maxwell equations are constructed by using results from relativistic front analysis, and the propagation characteristics of these beams are analyzed. The rays of geometrical optics are shown to be the trajectories of energy flow, as given by the Poynting vector. The longitudinal components of the field vectors in the direction of the beam axis, though small, are shown to be essential for a consistent description.
Resumo:
A study of the effect of N2 reservoir temperature on the small-signal gain in a downstream-mixing 16 μm CO2-N2 GDL is presented. It is shown that the small-signal gain decreases with the increase of N2 reservoir temperature. The conditions for reversing this trend are discussed and the results are presented in the form of graphs.
Resumo:
Dichromated gelatin is thought to be a good substitute for photographic emulsions in some uses. The results of a systematic study of the effect of the pH of the developer on the diffraction efficiency of volume holographic gratings recorded in dye sensitized dichromated gelatin are presented.
Resumo:
Whereas the employment of nanotechnology in electronics and optics engineering is relatively well established, the use of nanostructured materials in medicine and biology is undoubtedly novel. Certain nanoscale surface phenomena are being exploited to promote or prevent the attachment of living cells. However, as yet, it has not been possible to develop methods that completely prevent cells from attaching to solid surfaces, since the mechanisms by which living cells interact with the nanoscale surface characteristics of these substrates are still poorly understood. Recently, novel and advanced surface characterisation techniques have been developed that allow the precise molecular and atomic scale characterisation of both living cells and the solid surfaces to which they attach. Given this additional capability, it may now be possible to define boundaries, or minimum dimensions, at which a surface feature can exert influence over an attaching living organism.This review explores the current research on the interaction of living cells with both native and nanostructured surfaces, and the role that these surface properties play in the different stages of cell attachment.
Resumo:
This RIRDC publication reports the findings and recommendations of the RIRDC funded study, "Fabrication of Electronic Materials from Australian Essential Oils". This project was undertaken to facilitate an expansion of the Australian Essential Oils Industry through the development of novel applications in the Electronic and Bio-Materials Industries. The findings presented in this report will provide value broadly across the Australian Essential Oils Industry, and more particularly to the growers involved in the production of tea tree, lavender and other essential oils. Several essential oils, namely tea tree oil, sandalwood oil, eucalyptus oil, alpha-pinene, d-limonene, lavender oil (a separate PhD project) and five major components of tea tree oil were tested. With the exception of sandalwood oil, all oils investigated were successfully polymerised. Importantly, this project determined that it is possible to use an environmentally friendly, inexpensive process of polymerisation to fabricate materials from essential oils in a reproducible manner with properties required by the optics, electronics, protective coatings, and bio-material industries.