948 resultados para transporter-encoding gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a genome-wide characterization of mRNA transcript levels in yeast grown on the fatty acid oleate, determined using Serial Analysis of Gene Expression (SAGE). Comparison of this SAGE library with that reported for glucose grown cells revealed the dramatic adaptive response of yeast to a change in carbon source. A major fraction (>20%) of the 15,000 mRNA molecules in a yeast cell comprised differentially expressed transcripts, which were derived from only 2% of the total number of ∼6300 yeast genes. Most of the mRNAs that were differentially expressed code for enzymes or for other proteins participating in metabolism (e.g., metabolite transporters). In oleate-grown cells, this was exemplified by the huge increase of mRNAs encoding the peroxisomal β-oxidation enzymes required for degradation of fatty acids. The data provide evidence for the existence of redox shuttles across organellar membranes that involve peroxisomal, cytoplasmic, and mitochondrial enzymes. We also analyzed the mRNA profile of a mutant strain with deletions of the PIP2 and OAF1 genes, encoding transcription factors required for induction of genes encoding peroxisomal proteins. Induction of genes under the immediate control of these factors was abolished; other genes were up-regulated, indicating an adaptive response to the changed metabolism imposed by the genetic impairment. We describe a statistical method for analysis of data obtained by SAGE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydomonas reinhardtii flagellar regeneration is accompanied by rapid induction of genes encoding a large set of flagellar structural components and provides a model system to study coordinate gene regulation and organelle assembly. After deflagellation, the abundance of a 70-kDa flagellar dynein intermediate chain (IC70, encoded by ODA6) mRNA increases approximately fourfold within 40 min and returns to predeflagellation levels by ∼90 min. We show by nuclear run-on that this increase results, in part, from increased rates of transcription. To localize cis induction elements, we created an IC70 minigene and measured accumulation, in C. reinhardtii, of transcripts from the endogenous gene and from introduced promoter deletion constructs. Clones containing 416 base pairs (bp) of 5′- and 2 kilobases (kb) of 3′-flanking region retained all sequences necessary for a normal pattern of mRNA abundance change after deflagellation. Extensive 5′- and 3′- flanking region deletions, which removed multiple copies of a proposed deflagellation-response element (the tub box), did not eliminate induction, and the IC70 5′-flanking region alone did not confer deflagellation responsiveness to a promoterless arylsulfatase (ARS) gene. Instead, an intron in the IC70 gene 5′-untranslated region was found to contain the deflagellation response element. These results suggest that the tub box does not play an essential role in deflagellation-induced transcriptional regulation of this dynein gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations of the glycoprotein rBAT cause cystinuria type I, an autosomal recessive failure of dibasic amino acid transport (b0,+ type) across luminal membranes of intestine and kidney cells. Here we identify the permease-like protein b0,+AT as the catalytic subunit that associates by a disulfide bond with rBAT to form a hetero-oligomeric b0,+ amino acid transporter complex. We demonstrate its b0,+-type amino acid transport kinetics using a heterodimeric fusion construct and show its luminal brush border localization in kidney proximal tubule. These biochemical, transport, and localization characteristics as well as the chromosomal localization on 19q support the notion that the b0,+AT protein is the product of the gene defective in non-type I cystinuria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a noninvasive detection method for expression of viral-mediated gene transfer. A recombinant adenovirus was constructed by using the gene for arginine kinase (AK), which is the invertebrate correlate to the vertebrate ATP-buffering enzyme, creatine kinase. Gene expression was noninvasively monitored using 31P-magnetic resonance spectroscopy (31P-MRS). The product of the AK enzyme, phosphoarginine (PArg), served as an MRS-visible reporter of AK expression. The recombinant adenovirus coding for arginine kinase (rAdCMVAK) was injected into the right hindlimbs of neonatal mice. Two weeks after injection of rAdCMVAK, a unique 31P-MRS resonance was observed. It was observable in all rAdCMVAK injected hindlimbs and was not present in the contralateral control or the vehicle injected limb. PArg and phosphocreatine (PCr) concentrations were calculated to be 11.6 ± 0.90 and 13.6 ± 1.1 mM respectively in rAdCMVAK injected limbs. AK activity was demonstrated in vivo by monitoring the decreases in PArg and ATP resonances during prolonged ischemia. After 1 h of ischemia intracellular pH was 6.73 ± 0.06, PCr/ATP was decreased by 77 ± 8%, whereas PArg/ATP was decreased by 50 ± 15% of basal levels. PArg and PCr returned to basal levels within 5 min of the restoration of blood flow. AK activity persisted for at least 8 mo after injection, indicating that adenoviral-mediated gene transfer can produce stable expression for long periods of time. Therefore, the cDNA encoding AK provides a useful reporter gene that allows noninvasive and repeated monitoring of gene expression after viral mediated gene transfer to muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in genes encoding transcriptional regulators can alter development and are important components of the molecular mechanisms of morphological evolution. MADS-box genes encode transcriptional regulators of diverse and important biological functions. In plants, MADS-box genes regulate flower, fruit, leaf, and root development. Recent sequencing efforts in Arabidopsis have allowed a nearly complete sampling of the MADS-box gene family from a single plant, something that was lacking in previous phylogenetic studies. To test the long-suspected parallel between the evolution of the MADS-box gene family and the evolution of plant form, a polarized gene phylogeny is necessary. Here we suggest that a gene duplication ancestral to the divergence of plants and animals gave rise to two main lineages of MADS-box genes: TypeI and TypeII. We locate the root of the eukaryotic MADS-box gene family between these two lineages. A novel monophyletic group of plant MADS domains (AGL34 like) seems to be more closely related to previously identified animal SRF-like MADS domains to form TypeI lineage. Most other plant sequences form a clear monophyletic group with animal MEF2-like domains to form TypeII lineage. Only plant TypeII members have a K domain that is downstream of the MADS domain in most plant members previously identified. This suggests that the K domain evolved after the duplication that gave rise to the two lineages. Finally, a group of intermediate plant sequences could be the result of recombination events. These analyses may guide the search for MADS-box sequences in basal eukaryotes and the phylogenetic placement of new genes from other plant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An adenovirus type 5 mutant deleted for the preterminal protein (pTP) gene was constructed using cell lines that express pTP. The pTP deletion mutant virus is incapable of replicating in the absence of complementation and does not express detectable levels of viral mRNAs that are expressed only after the onset of replication. Accumulation of early-region mRNAs, including that for E1A, exhibits a lag relative to that observed from the wild-type virus. However, E1A mRNA accumulation attains a steady-state level similar to the level of expression during the early phase of infection with the wild-type virus. In 293-pTP cells (human embryonic kidney cells that express pTP in addition to high levels of adenovirus E1A and E1B proteins), the pTP deletion mutant virus replicates efficiently and yields infectious titers within 5-fold of that of the wild-type virus. The deletion of 1.2 kb of pTP-encoding sequence increases the size of foreign DNA that can be introduced into the virus and, with an absolute block to replication, makes this virus an important tool for gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have isolated the promoter region and determined the start sites of transcription for the gene encoding the chicken m2 (cm2) muscarinic acetylcholine receptor. Transfection experiments, using cm2-luciferase reporter gene constructs, demonstrated that a 789-bp genomic fragment was sufficient to drive high level expression in chicken heart primary cultures, while an additional 1.2-kb region was required for maximal expression in mouse septal/neuroblastoma (SN56) cells. Treatment of SN56 cells with the cytokines ciliary neurotrophic factor and leukemia inhibitory factor increases expression of endogenous muscarinic acetylcholine receptors and results in a 4- to 6-fold induction of cm2 promoter driven luciferase expression. We have mapped a region of the cm2 promoter that is necessary for induction by cytokines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The murine ZnT3 gene was cloned by virtue of its homology to the ZnT2 gene, which encodes a membrane protein that facilitates sequestration of zinc in endosomal vesicles. ZnT-3 protein is predicted to have six transmembrane domains and shares 52% amino acid identity with ZnT-2, with the homology extending throughout the two sequences. Human ZnT-3 cDNAs were also cloned; the amino acid sequence is 86% identical to murine ZnT-3. The mouse ZnT3 gene has 8 exons and maps to chromosome 5. Northern blot and reverse transcriptase–PCR analyses demonstrate that murine ZnT-3 expression is restricted to the brain and testis. In situ hybridization reveals that within the brain, ZnT-3 mRNA is most abundant in the hippocampus and cerebral cortex. Antibodies raised against the C-terminal tail of mouse ZnT-3 react with the projections from these neurons and produce a pattern similar to that obtained with Timm’s reaction, which reveals histochemically reactive zinc within synaptic vesicles. We propose that ZnT-3 facilitates the accumulation of zinc in synaptic vesicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the antitumor immune response after gene transfer of a foreign major histocompatibility complex class I protein, HLA-B7, was performed. Ten HLA-B7-negative patients with stage IV melanoma were treated in an effort to stimulate local tumor immunity. Plasmid DNA was detected within treated tumor nodules, and RNA encoding recombinant HLA-B7 or HLA-B7 protein was demonstrated in 9 of 10 patients. T cell migration into treated lesions was observed and tumor-infiltrating lymphocyte reactivity was enhanced in six of seven and two of two patients analyzed, respectively. In contrast, the frequency of cytotoxic T lymphocyte against autologous tumor in circulating peripheral blood lymphocytes was not altered significantly, suggesting that peripheral blood lymphocyte reactivity is not indicative of local tumor responsiveness. Local inhibition of tumor growth was detected after gene transfer in two patients, one of whom showed a partial remission. This patient subsequently received treatment with tumor-infiltrating lymphocytes derived from gene-modified tumor, with a complete regression of residual disease. Thus, gene transfer with DNA–liposome complexes encoding an allogeneic major histocompatibility complex protein stimulated local antitumor immune responses that facilitated the generation of effector cells for immunotherapy of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription of CAB genes, encoding the chlorophyll a/b-binding proteins, is rapidly induced in dark-grown Arabidopsis seedlings following a light pulse. The transient induction is followed by several cycles of a circadian rhythm. Seedlings transferred to continuous light are known to exhibit a robust circadian rhythm of CAB expression. The precise waveform of CAB expression in light–dark cycles, however, reflects a regulatory network that integrates information from photoreceptors, from the circadian clock and possibly from a developmental program. We have used the luciferase reporter system to investigate CAB expression with high time resolution. We demonstrate that CAB expression in light-grown plants exhibits a transient induction following light onset, similar to the response in dark-grown seedlings. The circadian rhythm modulates the magnitude and the kinetics of the response to light, such that the CAB promoter is not light responsive during the subjective night. A signaling pathway from the circadian oscillator must therefore antagonize the phototransduction pathways controlling the CAB promoter. We have further demonstrated that the phase of maximal CAB expression is delayed in light–dark cycles with long photoperiods, due to the entrainment of the circadian oscillator. Under short photoperiods, this pattern of entrainment ensures that dawn coincides with a phase of high light responsiveness, whereas under long photoperiods, the light response at dawn is reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Choline is an important metabolite in all cells due to the major contribution of phosphatidylcholine to the production of membranes, but it takes on an added role in cholinergic neurons where it participates in the synthesis of the neurotransmitter acetylcholine. We have cloned a suppressor for a yeast choline transport mutation from a Torpedo electric lobe yeast expression library by functional complementation. The full-length clone encodes a protein with 10 putative transmembrane domains, two of which contain transporter-like motifs, and whose expression increased high-affinity choline uptake in mutant yeast. The gene was called CTL1 for its choline transporter-like properties. The homologous rat gene, rCTL1, was isolated and found to be highly expressed as a 3.5-kb transcript in the spinal cord and brain and as a 5-kb transcript in the colon. In situ hybridization showed strong expression of rCTL1 in motor neurons and oligodendrocytes and to a lesser extent in various neuronal populations throughout the rat brain. High levels of rCTL1 were also identified in the mucosal cell layer of the colon. Although the sequence of the CTL1 gene shows clear homology with a single gene in Caenorhabditis elegans, several homologous genes are found in mammals (CTL2–4). These results establish a new family of genes for transporter-like proteins in eukaryotes and suggest that one of its members, CTL1, is involved in supplying choline to certain cell types, including a specific subset of cholinergic neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The N gene, a member of the Toll-IL-1 homology region–nucleotide binding site–leucine-rich repeat region (LRR) class of plant resistance genes, encodes two transcripts, NS and NL, via alternative splicing of the alternative exon present in the intron III. The NS transcript, predicted to encode the full-length N protein containing the Toll-IL-1 homology region, nucleotide binding site, and LRR, is more prevalent before and for 3 hr after tobacco mosaic virus (TMV) infection. The NL transcript, predicted to encode a truncated N protein (Ntr) lacking 13 of the 14 repeats of the LRR, is more prevalent 4–8 hr after TMV infection. Plants harboring a cDNA-NS transgene, capable of encoding an N protein but not an Ntr protein, fail to exhibit complete resistance to TMV. Transgenic plants containing a cDNA-NS-bearing intron III and containing 3′ N-genomic sequences, encoding both NS and NL transcripts, exhibit complete resistance to TMV. These results suggest that both N transcripts and presumably their encoded protein products are necessary to confer complete resistance to TMV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification and characterization of p53 target genes would lead to a better understanding of p53 functions and p53-mediated signaling pathways. Two putative p53 binding sites were identified in the promoter of a gene encoding PTGF-β, a type β transforming growth factor (TGF-β) superfamily member. Gel shift assay showed that p53 bound to both sites. Luciferase-coupled transactivation assay revealed that the gene promoter was activated in a p53 dose- as well as p53 binding site-dependent manner by wild-type p53 but not by several p53 mutants. The p53 binding and transactivation of the PTGF-β promoter was enhanced by etoposide, a p53 activator, and was largely blocked by a dominant negative p53 mutant. Furthermore, expression of endogenous PTGF-β was remarkably induced by etoposide in p53-positive, but not in p53-negative, cell lines. Finally, the conditioned medium collected from PTGF-β-overexpressing cells, but not from the control cells, suppressed tumor cell growth. Growth suppression was not, however, seen in cells that lack functional TGF-β receptors or Smad4, suggesting that PTGF-β acts through the TGF-β signaling pathway. Thus, PTGF-β, a secretory protein, is a p53 target that could mediate p53-induced growth suppression in autocrinal as well as paracrinal fashions. The finding made a vertical connection between p53 and TGF-β signaling pathways in controlling cell growth and implied a potential important role of p53 in inflammation regulation via PTGF-β.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report successful electro-gene therapy (EGT) by using plasmid DNA for tumor-bearing mice. Subcutaneously inoculated CT26 tumor was subjected to EGT, which consists of intratumoral injection of a naked plasmid encoding a marker gene or a therapeutic gene, followed by in vivo electroporation (EP). When this treatment modality is carried out with the plasmid DNA for the green fluorescent protein gene, followed by in vivo EP with the optimized pulse parameters, numerous intensely bright green fluorescent signals appeared within the tumor. EGT, by using the “A” fragment of the diphtheria toxin gene significantly inhibited the growth of tumors, by about 30%, on the flank of mice. With the herpes simplex virus thymidine kinase gene, followed by systemic injection of ganciclovir, EGT was far more effective in retarding tumor growth, varying between 50% and 90%, compared with the other controls. Based on these results, it appears that EGT can be used successfully for treating murine solid tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RD114/simian type D retroviruses, which include the feline endogenous retrovirus RD114, all strains of simian immunosuppressive type D retroviruses, the avian reticuloendotheliosis group including spleen necrosis virus, and baboon endogenous virus, use a common cell-surface receptor for cell entry. We have used a retroviral cDNA library approach, involving transfer and expression of cDNAs from highly infectable HeLa cells to nonpermissive NIH 3T3 mouse cells, to clone and identify this receptor. The cloned cDNA, denoted RDR, is an allele of the previously cloned neutral amino acid transporter ATB0 (SLC1A5). Both RDR and ATB0 serve as retrovirus receptors and both show specific transport of neutral amino acids. We have localized the receptor by radiation hybrid mapping to a region of about 500-kb pairs on the long arm of human chromosome 19 at q13.3. Infection of cells with RD114/type D retroviruses results in impaired amino acid transport, suggesting a mechanism for virus toxicity and immunosuppression. The identification and functional characterization of this retrovirus receptor provide insight into the retrovirus life cycle and pathogenesis and will be an important tool for optimization of gene therapy using vectors derived from RD114/type D retroviruses.