963 resultados para transformation temperature
Resumo:
The electron temperature structure in a weakly ionized plasma is studied allowing the degree of ionization to vary across the shock wave. The values of the electron temperature and the downstream equilibrium temperature obtained with variable ionization are less than those for frozen ionization. The electron temperature rises sharply behind the shock for variable ionization while a gradual increase is predicted by frozen ionization.
Resumo:
The thermally activated plastic flow of polycrystalline cadmium was investigated by differentialstress creep tests at 86°K and tensile tests in the temperature range 86°–473°K. The activation energy (0.55 eV) at zero effective stress and the activation volume as a function of effective stress were obtained. It is concluded that intersection of glide and forest dislocations becomes rate controlling for low temperature deformation. The approximate stacking-fault width in cadmium is deduced to be “1.5b”.
Resumo:
ZnO nanostructures were deposited on flexible polymer sheet and cotton fabrics at room temperature by activated reactive evaporation. Room-temperature photoluminescence spectrum of ZnO nanostructured film exhibited a week intrinsic UV emission and a strong broad yellow-orange visible emission. TEM and HRTEM studies show that the grown nanostructures are crystalline in nature and their growth direction was indentified to be along [002]. ZnO nanostructures grown on the copper-coated flexible polymer sheets exhibited stable field-emissio characteristics with a threshold voltage of 2.74 V/mu m (250 mu A) and a very large field enhancement factor (beta) of 23,213. Cotton fabric coated with ZnO nanostructures show an excellent antimicrobial activity against Staphylococcus aureus bacteria (Gram positive), and similar to 73% reduction in the bacterial population is achieved compared to uncoated fabrics after 4 h in viability. Using a shadow mask technique, we also selectively deposited the nanostructures at room temperature on polymer substrates.
Resumo:
Some transformation reactions of α-pinene to give 4- and 3-membered ring compounds, not hitherto obtained from this source, are described. The study furnished a convenient method of preparation of the optically active cyclobutanone IVa, the title compound which served as the key substrate for all the transformations reported.
Resumo:
The synthesis, characterization and photophysical properties of a 4f-3d mixed metal compound, Gd(H2O)(3)Co[C5N1H3-(COO)(2)](3), are described; the structure is unique, consisting of sheets with large pores ( ca. 7 angstrom diameter) in the sheets and transforms to a perovskite oxide at moderate temperatures.
Resumo:
The variations in certain spin-Hamiltonian parameters of the Cu++ ion in dibarium copper formate tetrahydrate with temperature have been studied. Optical absorption investigations on single crystals of the salt at room temperature and 90° K. are reported. The results are discussed in terms of a model in which vibronic mixing of certain electron levels of the Cu++ ion play an important role.
Resumo:
An exact solution for determining the thermal stresses in a finite short cylinder due to an axisymmetric steady temperature field along the curved surface has been given. It is shown that a part of the solution obtained for this problem can be used to determine the thermal stresses in a finite solid cylinder heated over the end surfaces. Numerical results for a finite cylinder symmetrically heated over a portion on the curved surface and heated over the complete end surfaces have been given.
Resumo:
A semitheoretical equation for latent heat of vaporization has been derived and tested. The average error in predicting the value at the normal boiling point in the case of about 90 compounds, which includes polar and nonpolar liquids, is about 1.8%. A relation between latent heat of vaporization and surface tension is also derived and is shown to lead to Watson's empirical relation which gives the change of latent heat of vaporization with temperature. This gives a physico-chemical justification for Watson's empirical relation and provides a rapid method of determining latent heats by measuring surface tension.
Resumo:
A temperature dependence has been observed in the spin-Hamiltonian parameters of the Cu++ ion in a tetragonal crystal field and the variation has been interpreted in terms of vibronic effects.
Resumo:
A three-dimensional exact solution for determining the thermal stresses in a finite hollow cylinder subject to a steady state axisymmetric temperature field over one of its end surfaces has been given. Numerical results for a hollow cylinder, having lenght to outer diameter ratio equal to one and inner to outer diameter ratio equal to 0.75, subjected to a symmetric temperature variation over the end surfaces of the cylinder have been given.
Resumo:
A three-dimensional rigorous solution for determining thermal stresses in a finite solid cylinder due to a steady state axisymmetric temperature field over one of its end surfaces is given. Numerical results for a solid cylinder having a length to diameter ratio equal to one and subjected to a symmetric temperature variation over half the radius of the cylinder at the end surfaces are included. These results have been compared with the results of the approximate solution given by W. Nowacki.
Resumo:
The out-diffusion of germanium from the core of a photosensitive fiber under elevated temperature is exploited to form a Fabry-Perot filter within a single fiber Bragg grating, by subjecting the diffused region to a single exposure using the standard phase-mask technique. A key aspect of our work is the measurement of the out-diffusion through energy dispersive X-ray analysis. Furthermore, we demonstrate the use of the above single-grating filter for discrimination and simultaneous measurement of strain and temperature. The proposed technique provides a significant advantage over other existing methods that require at least two gratings.