905 resultados para time history analysis
Resumo:
Background This study addressed the temporal properties of personality disorders and their treatment by schema-centered group psychotherapy. It investigated the change mechanisms of psychotherapy using a novel method by which psychotherapy can be modeled explicitly in the temporal domain. Methodology and Findings 69 patients were assigned to a specific schema-centered behavioral group psychotherapy, 26 to social skills training as a control condition. The largest diagnostic subgroups were narcissistic and borderline personality disorder. Both treatments offered 30 group sessions of 100 min duration each, at a frequency of two sessions per week. Therapy process was described by components resulting from principal component analysis of patients' session-reports that were obtained after each session. These patient-assessed components were Clarification, Bond, Rejection, and Emotional Activation. The statistical approach focused on time-lagged associations of components using time-series panel analysis. This method provided a detailed quantitative representation of therapy process. It was found that Clarification played a core role in schema-centered psychotherapy, reducing rejection and regulating the emotion of patients. This was also a change mechanism linked to therapy outcome. Conclusions/Significance The introduced process-oriented methodology allowed to highlight the mechanisms by which psychotherapeutic treatment became effective. Additionally, process models depicted the actual patterns that differentiated specific diagnostic subgroups. Time-series analysis explores Granger causality, a non-experimental approximation of causality based on temporal sequences. This methodology, resting upon naturalistic data, can explicate mechanisms of action in psychotherapy research and illustrate the temporal patterns underlying personality disorders.
Resumo:
There is a consensus in China that industrialization, urbanization, globalization and information technology will enhance China's urban competitiveness. We have developed a methodology for the analysis of urban competitiveness that we have applied to China's 25 principal cities during three periods from 1990 through 2009. Our model uses data for 12 variables, to which we apply appropriate statistical techniques. We are able to examine the competitiveness of inland cities and those on the coast, how this has changed during the two decades of the study, the competitiveness of Mega Cities and of administrative centres, and the importance of each variable in explaining urban competitiveness and its development over time. This analysis will be of benefit to Chinese planners as they seek to enhance the competitiveness of China and its major cities in the future.
Resumo:
[1] Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthicδ18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069–779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (∼940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthicδ18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonicδ18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.
Resumo:
Ketamine is widely used as an anesthetic in a variety of drug combinations in human and veterinary medicine. Recently, it gained new interest for use in long-term pain therapy administered in sub-anesthetic doses in humans and animals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPk) model for ketamine in ponies and to investigate the effect of low-dose ketamine infusion on the amplitude and the duration of the nociceptive withdrawal reflex (NWR). A target-controlled infusion (TCI) of ketamine with a target plasma level of 1 microg/ml S-ketamine over 120 min under isoflurane anesthesia was performed in Shetland ponies. A quantitative electromyographic assessment of the NWR was done before, during and after the TCI. Plasma levels of R-/S-ketamine and R-/S-norketamine were determined by enantioselective capillary electrophoresis. These data and two additional data sets from bolus studies were used to build a PBPk model for ketamine in ponies. The peak-to-peak amplitude and the duration of the NWR decreased significantly during TCI and returned slowly toward baseline values after the end of TCI. The PBPk model provides reliable prediction of plasma and tissue levels of R- and S-ketamine and R- and S-norketamine. Furthermore, biotransformation of ketamine takes place in the liver and in the lung via first-pass metabolism. Plasma concentrations of S-norketamine were higher compared to R-norketamine during TCI at all time points. Analysis of the data suggested identical biotransformation rates from the parent compounds to the principle metabolites (R- and S-norketamine) but different downstream metabolism to further metabolites. The PBPk model can provide predictions of R- and S-ketamine and norketamine concentrations in other clinical settings (e.g. horses).
Resumo:
This study investigated whether the epidemiology of penicillin-non-susceptible pneumococci (PNSP) colonising small children correlated with the biannual epidemic activity of respiratory syncytial virus (RSV). Colonisation rates and the prevalence of PNSP among paediatric outpatients aged < 5 years was analysed between January 1998 and September 2003 using an established national surveillance network. Resistance trends were investigated using time-series analysis to assess the correlation with the biannual pattern of RSV infections and national sales of oral paediatric formulations of antibiotics and antibiotic prescriptions to children aged < 5 years for acute respiratory tract infections. PNSP rates exhibited a biannual cycle in phase with the biannual seasonal RSV epidemics (p < 0.05). Resistance rates were higher during the winter seasons of 1998-1999 (20.1%), 2000-2001 (16.0%) and 2002-2003 (19.1%), compared with the winter seasons of 1997-1998 (8.2%), 1999-2000 (11.6%) and 2001-2002 (9.5%). Antibiotic sales and prescriptions showed regular peaks during each winter, with no significant correlation with the biannual pattern of RSV activity and seasonal trends of PNSP. RSV is an important determinant of the spread of PNSP and must be considered in strategies aimed at antimicrobial resistance control.
Resumo:
In 1997, the Swiss Transplant Working Group Blood and Marrow Transplantation (STABMT) initiated a mandatory national registry for all haematopoietic stem cell transplants (HSCT) in Switzerland. As of 2003, information was collected of 2010 patients with a first HSCT (577 allogeneic (29%) and 1433 autologous (71%) HSCT) and 616 additional re-transplants. This included 1167 male and 843 female patients with a median age of 42.4 years (range 0.2-76.6 years). Main indications were leukaemias (592; 29%) lymphoproliferative disorders (1,061; 53%), solid tumours (295; 15%) and non-malignant disorders (62; 3%). At the time of analysis 1,263 patients were alive (63%), 747 had died (37%). Probability of survival, transplant related mortality or relapse at 5 years was 52%, 21%, 36% for allogeneic and 54%, 5%, 60% for autologous HSCT. Outcome depended on indication, donor type, stem cell source and age of patient. HSCT is an established therapy in Switzerland. These data describe current practice and outcome.
Resumo:
The NMMAPS data package contains daily mortality, air pollution, and weather data originally assembled as part of the National Morbidity,Mortality, and Air Pollution Study (NMMAPS). The data have recently been updated and are available for 108 United States cities for the years 1987--2000. The package provides tools for building versions of the full database in a structured and reproducible manner. These database derivatives may be more suitable for particular analyses. We describe how to use the package to implement a multi-city time series analysis of mortality and PM(10). In addition we demonstrate how to reproduce recent findings based on the NMMAPS data.
Resumo:
RATIONALE: Both psychotropic drugs and mental disorders have typical signatures in quantitative electroencephalography (EEG). Previous studies found that some psychotropic drugs had EEG effects opposite to the EEG effects of the mental disorders treated with these drugs (key-lock principle). OBJECTIVES: We performed a placebo-controlled pharmaco-EEG study on two conventional antipsychotics (chlorpromazine and haloperidol) and four atypical antipsychotics (olanzapine, perospirone, quetiapine, and risperidone) in healthy volunteers. We investigated differences between conventional and atypical drug effects and whether the drug effects were compatible with the key-lock principle. METHODS: Fourteen subjects underwent seven EEG recording sessions, one for each drug (dosage equivalent of 1 mg haloperidol). In a time-domain analysis, we quantified the EEG by identifying clusters of transiently stable EEG topographies (microstates). Frequency-domain analysis used absolute power across electrodes and the location of the center of gravity (centroid) of the spatial distribution of power in different frequency bands. RESULTS: Perospirone increased duration of a microstate class typically shortened in schizophrenics. Haloperidol increased mean microstate duration of all classes, increased alpha 1 and beta 1 power, and tended to shift the beta 1 centroid posterior. Quetiapine decreased alpha 1 power and shifted the centroid anterior in both alpha bands. Olanzapine shifted the centroid anterior in alpha 2 and beta 1. CONCLUSIONS: The increased microstate duration under perospirone and haloperidol was opposite to effects previously reported in schizophrenic patients, suggesting a key-lock mechanism. The opposite centroid changes induced by olanzapine and quetiapine compared to haloperidol might characterize the difference between conventional and atypical antipsychotics.
Resumo:
The longitudinal dimension of schizophrenia and related severe mental illness is a key component of theoretical models of recovery. However, empirical longitudinal investigations have been underrepresented in the psychopathology of schizophrenia. Similarly, traditional approaches to longitudinal analysis of psychopathological data have had serious limitations. The utilization of modern longitudinal methods is necessary to capture the complexity of biopsychosocial models of treatment and recovery in schizophrenia. The present paper summarizes empirical data from traditional longitudinal research investigating recovery in symptoms, neurocognition, and social functioning. Studies conducted under treatment as usual conditions are compared to psychosocial intervention studies and potential treatment mechanisms of psychosocial interventions are discussed. Investigations of rehabilitation for schizophrenia using the longitudinal analytic strategies of growth curve and time series analysis are demonstrated. The respective advantages and disadvantages of these modern methods are highlighted. Their potential use for future research of treatment effects and recovery in schizophrenia is also discussed.
Resumo:
Estradiol and progesterone are crucial for the acquisition of receptivity and the change in transcriptional activity of target genes in the implantation window. The aim of this study was to differentiate the regulation of genes in the endometrium of patients with recurrent implantation failure (IF) versus those who became pregnant after in vitro fertilization (IVF) treatment. Moreover, the effect of embryo-derived factors on endometrial transcriptional activity was studied. Nine women with known IVF outcome (IF, M, miscarriage, OP, ongoing pregnancy) and undergoing hysteroscopy with endometrial biopsy were enrolled. Biopsies were taken during the midluteal phase. After culture in the presence of embryo-conditioned IVF media, total RNA was extracted and submitted to reverse transcription, target cDNA synthesis, biotin labelling, fragmentation and hybridization using the Affymetrix Human Genome U133A 2.0 Chip. Differential expression of selected genes was re-analysed by quantitative PCR, in which the results were calculated as threshold cycle differences between the groups and normalized to Glyceraldehyde phosphate dehydrogenase and beta-actin. Differences were seen for several genes from endometrial tissue between the IF and the pregnancy groups, and when comparing OP with M, 1875 up- and 1807 down-regulated genes were returned. Real-time PCR analysis confirmed up-regulation for somatostatin, PLAP-2, mucin 4 and CD163, and down-regulation of glycodelin, IL-24, CD69, leukaemia inhibitory factor and prolactin receptor between Op and M. When the different embryo-conditioned media were compared, no significant differential regulation could be demonstrated. Although microarray profiling may currently not be sensitive enough for studying the effects of embryo-derived factors on the endometrium, the observed differences in gene expression between M and OP suggest that it will become an interesting tool for the identification of fertility-relevant markers produced by the endometrium.
Resumo:
BACKGROUND: Lymph node staging of bladder or prostate cancer using conventional imaging is limited. Newer approaches such as ultrasmall superparamagnetic particles of iron oxide (USPIO) and diffusion-weighted magnetic resonance imaging (DW-MRI) have inconsistent diagnostic accuracy and are difficult to interpret. OBJECTIVE: To assess whether combined USPIO and DW-MRI (USPIO-DW-MRI) improves staging of normal-sized lymph nodes in bladder and/or prostate cancer patients. DESIGN, SETTING, AND PARTICIPANTS: Twenty-one consecutive patients with bladder and/or prostate cancer were enrolled between May and October 2008. One patient was excluded secondary to bone metastases detected on DW-MRI with subsequent abstention from surgery. INTERVENTION: Patients preoperatively underwent 3-T MRI before and after administration of lymphotropic USPIO using conventional MRI sequences combined with DW-MRI. Surgery consisted of extended pelvic lymphadenectomy and resection of primary tumors. MEASUREMENTS: Diagnostic accuracies of the new combined USPIO-DW-MRI approach compared with the "classic" reading method evaluating USPIO images without and with DW-MRI versus histopathology were evaluated. Duration of the two reading methods was noted for each patient. RESULTS AND LIMITATIONS: Diagnostic accuracy (90% per patient or per pelvic side) was comparable for the classic and the USPIO-DW-MRI reading method, while time of analysis with 80 min (range 45-180 min) for the classic and 13 min (range 5-90 min) for the USPIO-DW-MRI method was significantly shorter (p<0.0001). Interobserver agreement (three blinded readers) was high with a kappa value of 0.75 and 0.84, respectively. Histopathological analysis showed metastases in 26 of 802 analyzed lymph nodes (3.2%). Of these, 24 nodes (92%) were correctly diagnosed as positive on USPIO-DW-MRI. In two patients, one micrometastasis each (1.0x0.2 mm; 0.7x0.4 mm) was missed in all imaging studies. CONCLUSIONS: USPIO-DW-MRI is a fast and accurate method for detecting pelvic lymph node metastases, even in normal-sized nodes of bladder or prostate cancer patients.
Resumo:
Brain activity relies on transient, fluctuating interactions between segregated neuronal populations. Synchronization within a single and between distributed neuronal clusters reflects the dynamics of these cooperative patterns. Thus absence epilepsy can be used as a model for integrated, large-scale investigation of the emergence of pathological collective dynamics in the brain. Indeed, spike-wave discharges (SWD) of an absence seizure are thought to reflect abnormal cortical hypersynchronization. In this paper, we address two questions: how and where do SWD arise in the human brain? Therefore, we explored the spatio-temporal dynamics of interactions within and between widely distributed cortical sites using magneto-encephalographic recordings of spontaneous absence seizures. We then extracted, from their time-frequency analysis, local synchronization of cortical sources and long-range synchronization linking distant sites. Our analyses revealed a reproducible sequence of 1) long-range desynchronization, 2) increased local synchronization and 3) increased long-range synchronization. Although both local and long-range synchronization displayed different spatio-temporal profiles, their cortical projection within an initiation time window overlap and reveal a multifocal fronto-central network. These observations contradict the classical view of sudden generalized synchronous activities in absence epilepsy. Furthermore, they suggest that brain states transition may rely on multi-scale processes involving both local and distant interactions.
Resumo:
OBJECTIVE: Hierarchical modeling has been proposed as a solution to the multiple exposure problem. We estimate associations between metabolic syndrome and different components of antiretroviral therapy using both conventional and hierarchical models. STUDY DESIGN AND SETTING: We use discrete time survival analysis to estimate the association between metabolic syndrome and cumulative exposure to 16 antiretrovirals from four drug classes. We fit a hierarchical model where the drug class provides a prior model of the association between metabolic syndrome and exposure to each antiretroviral. RESULTS: One thousand two hundred and eighteen patients were followed for a median of 27 months, with 242 cases of metabolic syndrome (20%) at a rate of 7.5 cases per 100 patient years. Metabolic syndrome was more likely to develop in patients exposed to stavudine, but was less likely to develop in those exposed to atazanavir. The estimate for exposure to atazanavir increased from hazard ratio of 0.06 per 6 months' use in the conventional model to 0.37 in the hierarchical model (or from 0.57 to 0.81 when using spline-based covariate adjustment). CONCLUSION: These results are consistent with trials that show the disadvantage of stavudine and advantage of atazanavir relative to other drugs in their respective classes. The hierarchical model gave more plausible results than the equivalent conventional model.
Resumo:
Die optimale Gestaltung logistischer Systeme und Prozesse bekommt eine immer größere Bedeutung für die Wirtschaftlichkeit und Wettbewerbsfähigkeit von Unternehmen. Für Einzelkomponenten von Materi-alflusssystemen sind neben exakten analytischen Verfahren auch Näherungslösungen und Ersatzmodelle in Form von Polynomen, neuronalen Netzen oder zeitdiskreten Verfahren vorhanden, mit denen eine gute Nachbildung des Verhaltens dieser Komponenten möglich ist. Ziel des Baukastensystems ist es, für diese Vielzahl von Methoden mit ihren spezifischen Ein- und Aus-gangsgrößen eine übergeordnete, einheitliche Kommunikations- und Datenschnittstelle zu definieren. In einem grafischen Editor kann ein Modell eines Materialflusssystems aus solchen Bausteinen gebildet und parametriert werden. Durch Verbindungen zwischen den Bausteinen werden Informationen ausge-tauscht. Die Berechnungen der Bausteine liefern Aussagen zu Auslastungen, Warteschlangen bzw. Warte-zeiten vor den Bausteinen sowie Flussgrößen zur Beschreibung der Abgangströme. The optimal arrangement of logistical systems and operations gets an increased importance for the economicalness and competitiveness of enterprises. For individual components of material flow systems there are also existing approximate solutions and substitute models besides exact analytical calculations in the form of polynomials, neural nets or time-discrete analysis which allows a good analytical description of the behaviour of these components. It is aim of the module system to define a superordinate and unified communication and data interface for all of these variety of methods with her specific input and output quantities. By using a graphic editor, the material flow system can be modelled of such components with specified functions and parameters. Connections between the components allows exchange of information. The calculations of the components provide statements concerning utilization, queue size or waiting time ahead of the components as well as parameters for the description of the departure process. Materialflusssysteme sind Träger innerbetrieblicher Transportprozesse und elementarer Bestandteil logistischer Systeme. Die optimale Gestaltung logistischer Systeme und Prozesse bekommt eine immer größere Bedeutung für die Wirtschaftlichkeit und Wettbewerbsfähigkeit von Unternehmen. Die effiziente Dimensionierung von Materialflusssystemen ist für Planer, Hersteller und Betreiber solcher Anlagen von grundsätzlicher Bedeutung. Für viele bei der Planung materialflusstechnischer Anlagen auftretende Fragestellungen steht noch immer kein Berechnungsverfahren oder -werkzeug zur Verfügung, welches allen drei folgenden Anforderungen gleicherma-ßen gerecht wird: Die Handhabung soll einfach, unkompliziert und schnell sein. Die Berechnungsergebnisse sollen eine hohe Genauigkeit haben. Die Berechnung soll allgemein gültige Ergebnisse liefern. Dabei handelt es sich um Fragestellungen, die durchaus grundlegender Natur sind. Beispielsweise nach den (statistisch) zu erwartenden minimalen und maximalen Auftragsdurchlaufzeiten, nach dem Einfluss von Belas-tungsschwankungen auf die Anlagenleistung, nach vorzusehenden Puffern (Stauplätze) und Leistungsreserven (Auslastung). Für die oben genannten Aufgaben der Materialflussplanung stehen heute hauptsächlich drei Verfahren zur Verfügung (Abb. 1): Faustformeln (gekennzeichnet mit f) sind einfach aber ungenau. Das Systemverhalten von Materialfluss-komponenten beschreiben sie selten über den gesamten Bereich möglicher Betriebsbedingungen und Konfi-gurationen. Das Verhalten von gesamten Materialflusssystemen ist zu komplex, als dass es mit Faustformeln adäquat beschreibbar wäre. Bedienungstheoretische Ansätze erlauben die Beschreibung von Materialflusskomponenten (kleines b) sehr genau und sehr umfassend, soweit Standardmethoden und -modelle der Bedienungstheorie anwendbar sind. Ist diese Voraussetzung nicht gegeben, kann der Aufwand zur Modellbildung schnell erheblich werden. Die Beschreibung von Materialflusssystemen (großes B) als Bedienungsnetzwerke ist nur unter (zum Teil stark) vereinfachenden Annahmen möglich. Solche Vereinfachungen gehen zu Lasten von Genauigkeit und All-gemeingültigkeit der Aussagen. Die Methoden sind häufig sehr komplex, ihre Anwendung erfordert vertief-te Kenntnisse in der Statistik und Stochastik. Simulationsuntersuchungen liefern für Materialflusskomponenten (kleines s) und für Materialflusssysteme (großes S) gleichermaßen genaue Aussagen. Der für die Untersuchungen erforderliche Aufwand hängt dabei weit weniger von den Eigenschaften und der Größe des Systems ab, als es bei bedienungstheoretischen An-sätzen der Fall ist. Die Aussagen der Simulation sind nie universell. Sie betreffen immer nur ein System in einer bestimmten Konfiguration. Die Anwendung der Simulation erfordert Spezialsoftware und vertiefte Kenntnisse in der Modellierung und Programmierung. Verfahren, die genaue und allgemein gültige Aussagen über das Verhalten komplexer Materialflusssysteme liefern können, sind insbesondere in der Phase der Angebotserstellung bzw. in der Phase der Grobplanung von besonderer Wichtigkeit. Andererseits sind heute verfügbare Verfahren aber zu kompliziert und damit unwirt-schaftlich. Gerade in der Phase der Systemgrobplanung werden häufig Änderungen in der Struktur des Systems notwendig, welche z.B. beim Einsatz der Simulation zu erheblichem Änderungsaufwand am Modell führt. Oftmals können solche Änderungen nicht schnell genug ausgeführt werden. Damit bleiben in der Praxis oft erhebliche Planungsunsicherheiten bestehen. Der Grundgedanke des Baukastensystems besteht in der Modularisierung von Materialflusssystemen in einzelne Bausteine und Berechnungen zum Verhalten dieser Komponenten. Die betrachteten Module sind Materialfluss-komponenten, die eine bestimmte logistische Funktion in einer konstruktiv bzw. steuerungstechnisch bedingten, definierten Weise ausführen. Das Verhalten einer Komponente wird durch Belastungen (Durchsatz) und techni-sche Parameter (Geschwindigkeit, Schaltzeit o.ä.) beeinflusst und kann durch ein adäquates mathematisches Modell quantifiziert werden. Das offene Baukastensystem soll dabei vor allem einen konzeptionellen Rahmen für die Integration derartiger Modellbausteine bilden. Es umfasst neben der Bausteinmodularisierung die Problematik der Kommunikation zwischen den Bausteinen (Schnittstellen) sowie Möglichkeiten zur Visualisierung von Ergebnissen. Das daraus abgeleitete softwaretechnische Konzept berücksichtigt neben der einheitlichen Integration der zum Teil stark unterschiedlichen Berechnungsverfahren für einzelne Materialflusskomponenten auch einheitliche Definitionen zur Beschreibung von benötigten Eingangsparametern einschließlich der Randbedingungen (Defini-tionsbereich) und Plausibilitätskontrollen sowie zur Ergebnisbereitstellung. Äußerst wichtig war die Zielstellung, das System offen und erweiterbar zu gestalten: Prototypisch wurden zwar einzelne vorliegende Bausteine integ-riert, es ist aber jederzeit möglich, weitere Verfahren in Form eines Bausteines zu implementieren und in das Baukastensystem einzubringen. Die Ergebnisse der Berechnungen für ein einzelnes Element (Output) fließen zugleich als Input in das nachfol-gende Element ein: Genau wie im realen Materialflusssystem durch Aneinanderreihung einzelner fördertechni-scher Elemente der Materialfluss realisiert wird, kommt es im Baukasten durch Verknüpfung der Bausteine zur Übertragung der relevanten Informationen, mit denen der Fluss beschrieben werden kann. Durch die Weitergabe der Ergebnisse kann trotz Modularisierung in einzelne Bausteine das Verhalten eines gesamten Materialflusssys-tems bestimmt werden. Daher sind auch hier einheitliche Festlegungen zu Art und Umfang der Übergabeparame-ter zwischen den Bausteinen erforderlich. Unter einem Baustein soll ein Modell einer Materialflusskomponente verstanden werden, welches das Verhalten dieser Komponente beim Vorliegen bestimmter Belastungen beschreibt. Dieses Verhalten ist insbesondere gekennzeichnet durch Warteschlangen und Wartezeiten, die vor der Komponente entstehen, durch Auslastung (Besetztanteil) der Komponente selbst und durch die Verteilung des zeitlichen Abstand (Variabilität) des die Komponente verlassenden Stroms an Transporteinheiten. Maßgeblich bestimmt wird dieses Verhalten durch Intensität und Variabilität des ankommenden Stroms an Transporteinheiten, durch die Arbeitsweise (z.B. stetig / unstetig, stochastisch / deterministisch) und zeitliche Inanspruchnahme der Komponente sowie durch Steuerungsregeln, mit denen die Reihenfolge (Priorisierung / Vorfahrt) und/oder Dauer der Abarbeitung (z.B. Regalbediengerät mit Strategie „Minimierung des Leerfahrtan-teils“) verändert werden. Im Grunde genommen beinhaltet ein Baustein damit ein mathematisches Modell, das einen oder mehrere an-kommende Ströme von Transporteinheiten in einen oder mehrere abgehende Ströme transformiert (Abb. 2). Derartige Modelle gibt es beispielsweise in Form von Bedienmodellen ([Gnedenko1984], [Fischer1990 u.a.]), zeitdiskreten Modellen ([Arnold2005], [Furmans1992]), künstlichen neuronalen Netzen ([Schulze2000], [Markwardt2003]), Polynomen ([Schulze1998]). Die zu Grunde liegenden Verfahren (analytisch, simulativ, numerisch) unterscheiden sich zwar erheblich, genü-gen aber prinzipiell den genannten Anforderungen. Die Fixierung auf ein mathematisches Modell ist aber nicht hinreichend, vielmehr bedarf es für einen Baustein auch definierter Schnittstellen, mit denen der Informationsaustausch erfolgen kann (Abb. 3). Dazu zählen neben der einheitlichen Bereitstellung von Informationen über die ankommenden und abgehenden Materialströme auch die Berücksichtigung einer individuellen Parametrierung der Bausteine sowie die Möglichkeit zur Interaktion mit dem Bediener (Anordnung, Parametrierung und Visualisierung). Das offene Konzept erlaubt das eigenständige Entwickeln und Aufnehmen neuer Bausteine in den Baukasten. Dazu ergibt sich als weitere Anforderung die einfache Konfigurierbarkeit eines Bausteins hinsichtlich Identifika-tion, Aussehen und Leistungsbeschreibung. An einen Baustein innerhalb des Baukastensystems werden weiter-hin die folgenden Anforderungen gestellt: Jeder Baustein ist eine in sich abgeschlossene Einheit und kann nur über die Ein- und Ausgänge mit seiner Umgebung kommunizieren. Damit ist ausgeschlossen, dass ein Baustein den Zustand eines ande-ren Bausteins beeinflussen kann. Das führt zu den beiden Lokalitätsbedingungen: Es gibt keine �����bergeordnete Steuerung, die in Abhängigkeit vom aktuellen Systemzustand dispositive Entscheidungen (z.B. zur Routenplanung) trifft. Blockierungen in Folge von Warteschlangen haben keine Auswirkungen auf die Funktion an-derer Bausteine. Bausteine beinhalten in sich abgeschlossene Verfahren zur Dimensionierung einer Komponente (Klas-se) des Materialflusssystems (z.B. Einschleusung auf einen Sorter, Drehtisch als Verzweigungselement oder als Eckumsetzer). Dabei werden auf Grund von technischen Parametern, Steuerungsstrategien und Belastungsannahmen (Durchsatz, Zeitverteilungen) Ergebnisse ermittelt. Ergebnisse im Sinne dieses Bausteinkonzepts sind Auslastungen, Warteschlangen bzw. Wartezeiten vor dem Baustein sowie Flussgrößen zur Beschreibung des Abgangstroms. Als Beschreibung eignen sich sowohl einzelne Kennwerte (Mittelwert, Varianz, Quantile) als auch statische Verteilungsfunktionen. Die Lokalitätsbedingungen stellen Einschränkungen in der Anwendbarkeit des Baukastensystems dar: Systeme mit übergeordneten Steuerungsebenen wie Routenplanung oder Leerfahrzeugsteuerung, die Entscheidungen auf Grund der vorhandenen Transportaufträge und des aktuellen Systemzustands treffen (Fahrerlose Transportsys-teme, Elektrohängebahn), können mit dem Baukasten nicht bearbeitet werden. Diese auf Unstetigförderern basierenden Systeme unterscheiden sich aber auch in ihren Einsatzmerkmalen grundlegend von den hier betrach-teten Stetigförderersystemen. Das Problem der Blockierungen vorgelagerter Bereiche durch zu große Warteschlangen kann dagegen bereits mit dem Baukasten betrachtet und zumindest visualisiert werden. Dazu ist den Verbindungen zwischen den Bausteinen eine Kapazität zugeordnet, so dass durch Vergleich mit den berechneten Warteschlangenlängen eine generelle Einschätzung zur Blockierungsgefahr möglich wird: Ist die Streckenkapazität kleiner als die mittlere Warteschlange, muss von einer permanenten Blockierung ausgegangen werden. In diesem Fall kann der vorhergehende Baustein seine gerade in Bearbeitung befindli-che Transporteinheit nach dem Ende der „Bedienung“ nicht sofort abgeben und behindert damit auch seine weiteren ankommenden Transporteinheiten. Für die Transporteinheiten bedeutet das eine Verlustzeit, die auch nicht wieder aufgeholt werden kann, für das gesamte Transportsystem ist von einer Leistungsminde-rung (geringerer Durchsatz, größere Transport- / Durchlaufzeit) auszugehen. Da bei der Berechnung der Bausteine von einer Blockierfreiheit ausgegangen wird, sind die Berechnungser-gebnisse in aller Regel falsch. Ist die Streckenkapazität zwar größer als die mittlere Warteschlange, aber kleiner als beispielsweise das 90%-Quantil der Warteschlange, ist mit teilweisen Blockierungen (in dem Fall mit mehr als 10% Wahr-scheinlichkeit) zu rechnen. Dann tritt der o.g. Effekt nur zeitweise auf. Die Ergebnisse der Berechungen sind dann zumindest für einzelne Bausteine ungenau. In beiden Fällen wird das Problem erkannt und dem Anwender signalisiert. Es wird davon ausgegangen, dass die geplante Funktionalität und Leistungsfähigkeit des Materialflusssystems nur dann gewährleistet ist, wenn keine Blockierungen auftreten. Durch Änderung der Parameter des kritischen Bausteins, aber auch durch Änderung der Materialströme muss daher eine Anpassung vorgenommen werden. Erst bei Vorliegen der Blockierfreiheit ist die Voraussetzung der Lokalität der Berechnungen erfüllt. Die Berechnungsverfahren in den Bausteinen selbst können wegen der Modularisierung (Lokalität) sehr unter-schiedlicher Art sein. Dabei ist es prinzipiell möglich, die einzelnen Ergebnisse eines Bausteins mit verschiede-nen Verfahren zu ermitteln, insbesondere dann, wenn auf Grund eines eingeschränkten Definitionsbereichs der Eingangsparameter die Anwendung eines bestimmten Verfahrens nicht zulässig ist. Bausteine, die einen Materialfluss auf Grund äußerer, nicht aus dem Verhalten des Bausteins resultierende Einflüsse generieren (Quelle) oder verändern (Service-Station), sind durch eine Flussgröße parametriert. Die Flussgröße ist eine statistische Verteilungsfunktion zur Beschreibung der Ankunfts- und Abgangsströme (Zwi-schenankunftszeiten). In der Praxis, insbesondere in der Planungsphase, ist aber eine solche Verteilungsfunktion meist nicht bekannt. Zudem erweist sich das Rechnen mit Verteilungsfunktionen als numerisch aufwändig. Untersuchungen in [Markwardt2003] haben gezeigt, dass eine Parametrisierung als Abstraktion über statistische Verteilungsfunktionen mit gleichen Erwartungswerten, Minima und Streuungen ausreichend genaue Ergebnisse liefert. Daher wird die Flussgröße beschrieben durch die Parameter Ankunftsrate (=Durchsatz), Mindestzeitabstand tmind und Variationskoeffizient c (als Maß für die Variabilität des Stroms). Zur Visualisierung der Ergebnisse kann die dreiparametrige Gammaverteilung zu Grunde gelegt werden, die eine gute Anpassung an reale Prozessverläufe bietet und durch die genannten Parameter eindeutig beschrieben ist: Weitere leistungsbestimmende Größen wie technische Parameter, Zeitbedarfe u.ä. werden als Parametertupel (k) der jeweiligen Klasse zugeordnet. So ist z.B. bei einer Einschleusung auf einen Sorter zu garantieren, dass der Strom auf der Hauptstrecke nicht angehalten wird. Das erfordert bei einer Einschleusung von der Nebenstrecke eine Lücke im Gutstrom auf der Hauptstrecke mit der Länge Mindestabstand und Fördergeschwindigkeit sind Parameter der ankommenden Förderstrecken, demnach ist lediglich die Größe ttr als Transferzeit ein leistungsbestimmender Parameter der Einschleusung. Förderstrecken stellen die Verbindungen zwischen den Bausteinen her und realisieren den eigentlichen Material-fluss durch das System. Die technische Realisierung kann dabei prinzipiell durch verschiedenartige Bauformen von Stetig- und Unstetigförderern erfolgen. Systeme, die aber vollständig auf der Basis von Unstetigförderern arbeiten wie fahrerlose Transportsysteme (FTS) oder Elektrohängebahn (EHB), werden im Rahmen des Baukas-tens nicht betrachtet, weil die Lokalitätsbedingungen nicht gelten und beispielsweise eine übergeordnete Sys-temsteuerung (Fahrzeugdisposition, Leerfahrtoptimierung) einen erheblichen Einfluss auf die Leistungsfähigkeit des Gesamtsystems hat. Förderstrecken im hier verwendeten Sinne sind Rollen-, Ketten-, Bandförderer oder ähnliches, deren maximaler Durchsatz im Wesentlichen durch zwei Parameter bestimmt wird: Fördergeschwindigkeit (vF) und Mindestab-stand zwischen den Transporteinheiten (smind). Der Mindestabstand ergibt sich aus der Länge der Transportein-heit in Transportrichtung (sx) und einem Sicherheitsabstand (s0), der für ein sicheres und gefahrloses Transportie-ren erforderlich ist. Die Mindestzeit tmind,S zwischen zwei Fördereinheiten auf einer Förderstrecke bestimmt sich demnach zu Ist das verbindende Förderelement nicht staufähig (nicht akkumulierend, z.B. Gurtbandförderer), so kann sich der Abstand zwischen den Fördergütern während des Förder- oder Transportvorgangs nicht verändern: Muss das Band angehalten werden, weil eine Abgabe an das nachfolgende Förderelement nicht möglich ist, bleiben alle Einheiten stehen. In diesem Fall ist es also nicht möglich, die Lücken im Transportstrom zu schließen, die bereits bei der Aufgabe auf das Förderelement entstehen. Für die Berechnung der Mindestzeit tmind,S bedeutet das, dass dann auch die Mindestzeit tmind,B des vorhergehenden Bausteins berücksichtigt werden muss. Die Mindestzeit des Streckenelements nach (6) bzw. (7) wird als einer der Parameter der Flussgröße zur Be-schreibung des am nachfolgenden Baustein ankommenden Stroms verwendet. Als Parameter der Förderstrecke werden neben der Fördergeschwindigkeit daher auch Angaben zum Transportgut (Abmessungen, Sicherheitsab-stand, Transportrichtung) benötigt. Es bot sich ferner an, eine Typisierung der Förderstrecken hinsichtlich ihrer technischen Realisierung (Rollenförderer, Kettenförderer, Bandförderer usw. mit zugeordneten Parametern) vorzunehmen, um den Aufwand für die Beschreibung der Förderstrecken gering zu halten. Weitere Parameter der Förderstrecken dienen der Aufnahme der Berechnungsergebnisse von vor- bzw. nachge-lagerten Bausteinen und beinhalten: die Länge der Warteschlange (einzelne Kenngrößen wie Mittelwert, 90%-, 95% bzw. 99%-Quantil oder - falls ermittelbar - als statistische Verteilung) die Wartezeit (ebenfalls Kenngrößen oder statistische Verteilung) die (Strecken-)Auslastung Variationskoeffizient für den Güterstrom Für die Darstellung des Materialflusses in einem System werden jeweils einzelne Materialfluss-Relationen betrachtet. Dabei wird angenommen, dass jede Relation an einer Quelle beginnt, an einer Senke endet, dabei mehrere Materialfluss-Komponenten (Bausteine) durchläuft und über den gesamten Verlauf in seiner Größe (Transportmenge) konstant bleibt. Einziger leistungsbestimmender Parameter einer Materialfluss-Relation ist die Transportmenge. Sie wird als zeitabhängige Größe angegeben und entspricht damit dem Durchsatz. Mindestabstand und Variationskoeffizient werden vom erzeugenden Baustein (Quelle) bestimmt, von den weiteren durchlaufenen Bausteinen verändert und über die Förderstrecken jeweils an den nachfolgenden Baustein übertragen. Die verbindenden Förderstrecken werden mit dem jeweiligen Durchsatz „belastet“. Bei Verbindungen, die von mehreren Relationen benutzt werden, summieren sich die Durchsätze, so dass sich unterschiedliche Strecken- und Bausteinbelastungen ergeben. Im Kontext des Baukastensystems werden Metadaten1 verwendet, um die in einem Baustein enthaltenen Infor-mationen über Anwendung, Verfahren und Restriktionen transparent zu machen. Ziel des Baukastensystems ist es je gerade, einfache und leicht handhabbare Berechnungsmodule für einen breiteren Anwenderkreis zur Verfü-gung zu stellen. Dazu sind Beschreibungen erforderlich, mit denen das Leistungsspektrum, mögliche Ergebnisse und Anwendungs- bzw. Einsatzkriterien dokumentiert werden. Aufgabe der Baustein-Bibliothek ist die Sammlung, Verwaltung und Bereitstellung von Informationen über die vorhandenen Bausteine. Damit soll dem Nutzer die Möglichkeit gegeben werden, für seine konkret benötigte Materialflusskomponente einen geeigneten Baustein zur Abbildung zu finden. Mit der Entwicklung weiterer Bausteine für ähnliche Funktionen, aber unterschiedliche Realisierungen (z. B. Regalbediengerät: einfach- oder doppeltiefe Lagerung, mit oder ohne Schnellläuferzone usw.) wächst die Notwendigkeit, die Einsatz- und Leis-tungsmerkmale des Bausteins in geeigneter Weise zu präsentieren. Die Baustein-Bibliothek enthält demnach eine formalisierte Beschreibung der vorhandenen und verfügbaren Bausteine. Die Informationen sind im Wesentlichen unter dem Aspekt einer einheitlichen Identifikation, Infor-mation, Visualisierung und Implementierung der unterschiedlichen Bausteine zusammengestellt worden. Einige der in der Baustein-Bibliothek enthaltenen Metadaten lassen sich durchaus mehreren Rubriken zuordnen. Identifikation und Information Ein Baustein wird durch eine eindeutige Ident-Nummer fixiert. Daneben geben Informationen zum Autor (Ent-wicklung und/oder Implementierung des Verfahrens) und eine Funktionsbeschreibung eine verbale Auskunft über den Baustein. Zusätzlich ist jeder Baustein einem bestimmten Typ zugeordnet entsprechend der Baustein-Klassifizierung (Bearbeiten, Verzweigen, Zusammenführen usw.), über den die Baustein-Auswahl eingegrenzt werden kann. Visualisierung Die Parameter für die Visualisierung beschreiben die Darstellung des Bausteins innerhalb des Baukastensystems (Form, Farbe, Lage der Ein- und Ausgänge des Bausteins, Icons). Implementierung Der Klassenname verweist auf die Implementierung des Bausteins. Zusätzlich benötigte Programm-Ressourcen (externe Bibliotheken wie *.dll , *.tcl o.ä.) können angegeben werden. Weiterhin sind Bezeichnungen und Erläuterungen der erforderlichen technischen Parameter für den Eingabedialog enthalten. Für die Förderstrecken wird ebenfalls eine formalisierte Beschreibung verwendet. Sie verweist jedoch nicht wie die Baustein-Bibliothek auf Software-Ressourcen, sondern enthält nur eine Reihe technischer Parameter, die für das Übertragungsverhalten der Förderstrecke eine Rolle spielen (Fördergeschwindigkeit, Arbeitsweise akkumu-lierend, Ausrichtung des Transportguts). Die Einträge lassen sich als Musterdatensätze (Template) für die Bau-stein-Verbindungen auffassen, um bestimmte, häufig vorkommende fördertechnische Lösungen diesen Verbin-dungen in einfacher Weise zuordnen zu können. Die Angaben sind aber im konkreten Anwendungsfall änderbar. Angaben zum Transportgut beschränken sich auf die Abmessungen der Transporteinheiten (Länge, Breite) und den erforderlichen Sicherheitsabstand (s0). Als Grundform wird von einer Standard-Euro-Palette (1200x800 mm) ausgegangen, es lassen sich aber auch Güter mit anderen Maßen hinzufügen. Die Angaben zum Transportgut werden in Verbindung mit den Parametern der Förderstrecken (Ausrichtung des Gutes längs oder quer) ausgewertet, so dass sich die jeweiligen Mindestabstände (Gleichung 6 bzw. 7) sowie der maximale Durchsatz Qmax als Grundlage für die Berechnung der Streckenauslastung bestimmen lassen. Das Gesamtkonzept des Baukastensystems ist in Abbildung 4 dargestellt. Es besteht im Wesentlichen aus drei Bereichen: Bausteinerstellung Bausteinverwaltung (Bibliotheken) Baukasten (Benutzeroberfläche) Dabei ist der Bereich der Bausteinerstellung nicht unmittelbarer Bestandteil der realisierten Lösung. Sie ist vielmehr die Quelle für die Bausteine, die über die jeweiligen Metadaten in einer Baustein-Bibliothek verwaltet und bereitgestellt werden. Die Verwaltung von Bausteinen und Förderstrecken ist die Umsetzung der Baustein-Bibliothek und (im erwei-terten Sinne) der Definitionen für die Förderstrecken. Der Modellbaukasten selbst stellt die Grafische Nutzeroberfläche dar (Abb. 11) und enthält den interaktiven, grafischen Modelleditor, die Auswahlelemente (Werkzeugkoffer bzw. -filter) für Bausteine und Förderstrecken, tabellarische Übersichten für alle Bausteine, Förderstrecken und Materialflussrelationen sowie Eingabedialoge für Bausteine, Förderstrecken und Materialflussrelationen. Die Entwicklung eines Modells mit dem Baukastensystem erfolgt prinzipiell in drei Schritten: Schritt eins umfasst die Anordnung und Definition der Bausteine. Der Modellbaukasten bietet die Möglich-keit, einen bestimmten Baustein direkt (z.B. Ausschleusung) oder unter Nutzung eines Bausteinfilters (z.B. alle Verzweigungselemente) auszuwählen und im grafischen Editor mittels Mausklick zu platzieren . An-schließend erfolgt im Dialog die notwendige Parametrierung des Bausteins. Dies beinhaltet sowohl die An-gaben zur Visualisierung (Drehung, Spiegelung) als auch die für die Dimensionierung erforderlichen techni-schen Parameter. Die für jeden Baustein benötigten Leistungsanforderungen (Durchsatz, lokale Transport-matrix) werden allerdings nicht direkt angegeben, sondern aus den Beziehungen zu den vor- und nachgela-gerten Bausteinen automatisch ermittelt (Übertragungsfunktion der Förderstrecken). Danach erfolgt in einem zweiten Schritt die Definition von Verbindung zwischen den Bausteinen (Förder-strecken): Das Erzeugen der Bausteinverbindungen ist ebenfalls ganz einfach zu realisieren. Nach Auswahl der zu Grunde liegenden Fördertechnik (z.B. Rollenförderer) wird durch Ziehen des Mauszeigers von einem nicht belegten Ausgang zu einem nicht belegten Eingang eines Bausteins die entsprechende Förderstrecke erzeugt. In einem abschließenden Dialog können die gewählten Voreinstellungen zum Transportgut, zum Förderertyp usw. bestätigt oder gegebenenfalls korrigiert werden. Außerdem kann die Kapazität der Förder-strecke definiert werden. Dabei geht es weniger um die Länge des Förderers als viel mehr um die Anzahl der vorgesehenen Puffer- oder Stauplätze im Zusammenhang mit den zu berechnenden Warteschlangenlän-gen. Abschließend wird im dritten Schritt der Materialfluss definiert: Ein Materialstrom ist jeweils eine Relation, die an einer Quelle beginnt, an einer Senke endet und dabei mehrere Bausteine durchläuft. Da die Förder-strecken zu diesem Zeitpunkt bereits definiert sein müssen, kann automatisch ein möglicher Weg zwischen Quelle und Senke gefunden werden. Ähnlich wie bei Routenplanungssystemen kann dabei durch zusätzliche Angabe von Zwischenpunkten (via) der automatisch vorgeschlagene Transportweg verändert und angepasst werden (Abb. 5). Nach Bestätigung des Transportweges und damit der unterwegs zu passierenden Bausteine erfolgt in einem Dialog die Parametrierung (Transportmenge pro Stunde) für diese Relation. Die Elemente des Transportweges (die benutzten Förderstrecken) werden mit dem entsprechenden Durchsatz „belastet“. Nach Abschluss der Modellierung kann die Berechnung ausgeführt werden. Im Ergebnis werden Kennzahlen bestimmt und im Baukasten in verschiedener Form visualisiert, um eine Bewertung der Ergebnisse vornehmen zu können. Eine Übersicht Fehlermeldungen listet die Problemelemente auf. Dabei wird die Schwere eines Problems farb-lich hervorgehoben: fataler Fehler (rot): entsteht z.B. bei Überlastung eines Bausteins – die geforderte Leistung für einen Bau-stein (und damit die des Gesamtsystems) kann nicht erbracht werden. lokaler Fehler (orange): entsteht z.B. bei permanenter Blockierung – die mittlere Warteschlange vor einem Baustein ist größer als dessen vorgesehene Kapazität. Warnung (hellgelb): bei teilweiser Blockierung – das 90%-Quantil der Warteschlange ist größer als die Ka-pazität der Förderstrecke, es ist daher zeitweise mit Blockierungen (und damit Behinderungen des vorherge-henden Bausteins) zu rechnen. Information (weiß): wird immer dann erzeugt, wenn Erwartungswerte für die Wartezeit oder Warteschlange mit einem G/G/1-Bedienmodell berechnet werden. Die Lösungen dieser Näherungsgleichungen sind im All-gemeinen nicht sehr genau, dienen aber als Abschätzung für die sonst fehlenden Kennwerte. Entsprechend der berechneten Auslastung werden die Bausteine im Modelleditor mit einer Farbabstufung von Grün nach Rot markiert, Bausteine und Förderstrecken leuchten rot bei Überlastung. Die dargestellten Ergebnisse im Modelleditor zu Bausteinen und Förderstrecken sind umschaltbar durch den Nutzer (Abb. 6). Je nach den in den Bausteinen hinterlegten Berechnungen sind jedoch nicht immer alle Kenn-größen verfügbar. Die Implementierung des Baukastensystems wurde mit Java (Release 1.5) vorgenommen. Für das Kernsystem wird dabei das in Abbildung 7 dargestellte Klassen-Konzept umgesetzt. Ausgehend von einer allgemeinen Klasse (Object3D) für Visualisierung von und Interaktionen mit grafischen Objekten wurden für Bausteine (AbstractNode) und Förderstrecken (Connection) die jeweiligen Klassen abgelei-tet. Für die Förderstecken ergibt sich dabei eine weitgehend einheitliche Beschreibungsform, die lediglich durch die Parametrierung (Vorlagen in der Förderstrecken-Bibliothek als XML-Datei) auf den konkreten Einsatz im Modell des Materialflusssystems angepasst werden muss. Anders verhält es sich mit den Bausteinen: Durch die mögliche Vielfalt von Bausteinen und den ihnen zu Grunde liegenden Berechnungsverfahren muss es auch eine Vielzahl von Klassen geben. Um jedoch für jeden belie-bigen Baustein den Zugriff (Bereitstellung von Eingangsdaten, Berechnung und Bereitstellung der Ergebnisse) in einer identischen Weise zu gewährleisten, muss es dafür eine nach außen einheitliche Schnittstelle geben. Die Java zu Grunde liegende objektorientierte Programmierung bietet mit dem Konzept der „abstrakten Klasse“ eine Möglichkeit, dies in einfacher Weise zu realisieren. Dazu wird mit AbstractNode quasi eine Vorlage entwi-ckelt, von der alle implementierten Baustein-Klassen abgeleitet sind. AbstractNode selbst enthält alle Methoden, mit denen Baustein-Daten übernommen oder übergeben, die jeweiligen Visualisierungen vorgenommen, die baustein-internen Verbindungen (lokale Transportmatrix) verwaltet und Ein- und Ausgänge mit den zugehörigen Förderstrecken verbunden werden. Die für den Aufruf der eigentlichen Berechnungen in den Bausteinen ver-wendeten Methoden sind deklariert, aber nicht implementiert (sogenannte abstrakte Methoden). Ein Baustein wird von AbstractNode abgeleitet und erbt damit die implementierten Methoden, lediglich die abstrakten Methoden, die die Spezifik des Bausteins ausmachen, sind noch zu implementieren. Um neue Bausteine zu erzeugen, wird Unterstützung in Form eines Bildschirmdialogs angeboten (Abb. 8). Danach sind die entsprechenden Angaben zu den Metadaten, zur Struktur und zur Visualisierung des Bausteins, die Eingangsparameter (Name und Erläuterung) sowie die berechenbaren Ergebnisse (z.B. Auslastung, Quantile der Warteschlangenlänge, aber keine Aussage zu Wartezeiten usw.) anzugeben. Nach Bestätigung der Daten und diversen Syntax- bzw. Semantik-Kontrollen wird der Baustein in der Bibliothek registriert, ein Sourcecode für den neuen Baustein generiert und kompiliert. Der Baustein selbst ist damit formal korrekt und kann sofort verwendet werden, liefert aber noch keine verwertbaren Ergebnisse, weil natürlich die Implementierung des Berechnungsverfahrens selbst noch aussteht. Das muss in einem zweiten Schritt im Rah-men der üblichen Software-Entwicklung nachgeholt werden. Dazu sind die Berechnungsverfahren zu implemen-tieren und die Bausteinschnittstellen zu bedienen. Der generierte Java-Code enthält in den Kommentaren eine Reihe von Hinweisen für den Programmierer, so dass sich problemlos die Schnittstellen des Bausteins program-mieren lassen (Abb. 9). In einem Beispiel werden ein Hochregallager (3 Regalbediengeräte) und zwei Kommissionierplätze durch ein Transportsystem verbunden. Mit der Einlastung von Kommissionieraufträgen werden im Simulationsmodell die entsprechenden Transportaufträge generiert und abgearbeitet (Abb. 10). Dabei können Systemzustände (z.B. Warteschlangen) protokolliert und statistisch ausgewertet werden. Ein entsprechendes Modell für den Baukasten ist in Abbildung 11 dargestellt. Der Vorteil des Baukastensystems liegt selbst bei diesem recht einfachen Beispiel im Zeitvorteil: Für Erstellung und Test des Simulationsmodells und anschließende Simulationsläufe und Auswertungen wird ein Zeitaufwand von ca. 4-5 Stunden benötigt, das Baukastenmodell braucht für Erstellung und korrekte Parametrierung weniger als 0,5 Stunden, die Rechenzeit selbst ist vernachlässigbar gering. Sollte im Ergebnis der Untersuchungen eine Änderung des Materialflusssystems notwendig werden, so führt das im Simulationsmodell teilweise zu erheblichen Änderungen (Abläufe, Steuerungsstrategien, Auswertungen) mit entsprechendem Zeitaufwand. Im Baukasten können dagegen in einfacher Weise zusätzliche Bausteine eingefügt oder vorhandene ersetzt werden durch Bausteine mit geänderter Funktion oder Steuerung. Strukturelle Änderungen am Materialflusssys-tem sind also mit deutlich geringerem Aufwand realisierbar. In [Markwardt2003] werden für mehrere Strukturen von Materialflusskomponenten Fehlerbetrachtungen über die Genauigkeit der mittels neuronaler Netze untersuchten Systeme gegenüber den Simulationsergebnissen vorge-nommen. Danach ergibt sich beispielsweise für das 90%-Quantil der Warteschlange eine Abweichung, die mit 90% Sicherheit kleiner als 0,3 Warteplätze ist. Bei den Variationskoeffizienten des Abgangsstroms betragen die absoluten Abweichungen mit 90% Sicherheit nicht mehr als 0,02 bis 0,05 (in Abhängigkeit vom betrachteten Baustein). Daraus wird die Schlussfolgerung abgeleitet, dass die durch Verknüpfung neuronaler Netze gewonne-nen Aussagen sehr gut mit statistischen Ergebnissen diskreter Simulation übereinstimmen und eine Planungssi-cherheit ermöglichen, die für einen Grobentwurf von Materialflusssystemen weit über die heute gebräuchlichen statischen Berechnungsverfahren hinausgehen. Im konkreten Beispiel wurde die Zahl der Pufferplätze vor den Kommissionierern (Work1 bzw. Work2) zu-nächst auf 3 begrenzt. Die Berechnung im Baukasten ergab dabei in beiden Fällen Fehlermeldungen mit dem Hinweis auf Blockierungen (Abb. 12, links). Diese bestätigten sich auch im Simulationsmodell (Abb. 12, rechts). Nach Vergr��ßerung der Pufferstrecken auf 7 Plätze ist die Blockierungsgefahr auf ein vertretbares Minimum reduziert, und die mit dem Baukasten berechneten Kenngrößen können durch die Simulation prinzipiell bestätigt werden. it dem offenen Baukastensystem ist eine schnelle, einfache, sichere und damit wirtschaftlichere Dimensionie-rung von Materialflusssystemen möglich. Für den Anwender sind sofort statistisch abgesicherte und ausreichend genaue Ergebnisse ohne aufwändige Berechnungen verfügbar, womit sich die Planungsqualität erhöht. Besonde-re Anforderungen an Hard- und Software sind dabei nicht erforderlich. Für die Dimensionierung der einzelnen Bausteine stehen Informationen aus der Bedienungstheorie, Simulati-onswissen und numerische Verfahren direkt und anwendungsbereit zur Verfügung. Es erlaubt eine deutlich vereinfachte Berechnung von statistischen Kenngrößen wie Quantile (statistische Obergrenzen) der Pufferbelegung, Auslastung von Einzelelementen und mittlere Auftragsdurchlaufzeit bei gleichzeitig erhöhter Genauigkeit. Ferner ist das Baukastensystem offen für eine Erweiterung um neue Bausteine, die neue oder spezielle fördertechnische Elemente abbilden oder zusätzliche Informationen liefern können. Da auch komplexe Materialflusssysteme immer wieder aus einer begrenzten Anzahl unterschiedlicher Kompo-nenten bestehen, können durch die Verknüpfung der Einzelbausteine auch Gesamtsysteme abgebildet werden. Die Verknüpfung der Bausteine über eine einheitliche Schnittstelle erlaubt Aussagen über das Verhalten der Gesamtanlage. Bei Einsatz des Baukastensystems sind in einer solchen Verknüpfung jederzeit Parameterände-rungen möglich, deren Folgen sofort sichtbar werden. Die Zeit bis zum Vorliegen gesicherter, ausreichend genauer Ergebnisse wird dadurch drastisch verkürzt. Damit erwächst Variantenuntersuchungen bereits in frühen Planungsphasen neues Potential und kann zum entscheidenden Wettbewerbsvorteil werden.
Resumo:
In this study, mice were vaccinated intranasally with recombinant N. caninum protein disulphide isomerase (NcPDI) emulsified in cholera toxin (CT) or cholera toxin subunit B (CTB) from Vibrio cholerae. The effects of vaccination were assessed in the murine nonpregnant model and the foetal infection model, respectively. In the nonpregnant mice, previous results were confirmed, in that intranasal vaccination with recNcPDI in CT was highly protective, and low cerebral parasite loads were noted upon real-time PCR analysis. Protection was accompanied by an IgG1-biased anti-NcPDI response upon infection and significantly increased expression of Th2 (IL-4/IL-10) and IL-17 transcripts in spleen compared with corresponding values in mice treated with CT only. However, vaccination with recNcPDI in CT did not induce significant protection in dams and their offspring. In the dams, increased splenic Th1 (IFN-γ/IL-12) and Th17 mRNA expressions was detected. No protection was noted in the groups vaccinated with recNcPDI emulsified in CTB. Thus, vaccination with recNcPDI in CT in nonpregnant mice followed by challenge infection induced a protective Th2-biased immune response, while in the pregnant mouse model, the same vaccine formulation resulted in a Th1-biased inflammatory response and failed to protect dams and their progeny.