945 resultados para three-dimensional continuun-mechanical image-warping
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJETIVO: Comparar do débito cardíaco (DC) e a fração de ejeção (FE) do coração de fetos masculinos e femininos obtidos por meio da ultrassonografia tridimensional, utilizando o spatio-temporal image correlation (STIC). MÉTODOS: Realizou-se um estudo de corte transversal com 216 fetos normais, entre 20 a 34 semanas de gestação, sendo 108 masculinos e 108 femininos. Os volumes ventriculares no final da sístole e diástole foram obtidos por meio do STIC, sendo as avaliações volumétricas realizadas pelo virtual organ computer-aided analysis (VOCAL) com rotação de 30º. Para o cálculo do DC utilizou-se a fórmula: DC= volume sistólico/frequência cardíaca fetal, enquanto que para a FE utilizou-se a fórmula: FE= volume sistólico/volume diastólico final. O DC (combinado, feminino e masculino) e a FE (masculina e feminina) foram comparadas utilizando-se o teste t não pareado e ANCOVA. Foram criados gráficos de dispersão com os percentis 5, 50 e 95. RESULTADOS: A média do DC combinado, DC direito, DC esquerdo, FE direita e FE esquerda, para feminino e masculino, foram 240,07 mL/min; 122,67 mL/min; 123,40 mL/min; 72,84%; 67,22%; 270,56 mL/min; 139,22 mL/min; 131,34 mL/min; 70,73% e 64,76%, respectivamente; sem diferença estatística (P> 0,05). CONCLUSÕES: O DC e a FE fetal obtidos por meio da ultrassonografia tridimensional (STIC) não apresentaram diferença significativa em relação ao gênero.
Resumo:
Images of a scene, static or dynamic, are generally acquired at different epochs from different viewpoints. They potentially gather information about the whole scene and its relative motion with respect to the acquisition device. Data from different (in the spatial or temporal domain) visual sources can be fused together to provide a unique consistent representation of the whole scene, even recovering the third dimension, permitting a more complete understanding of the scene content. Moreover, the pose of the acquisition device can be achieved by estimating the relative motion parameters linking different views, thus providing localization information for automatic guidance purposes. Image registration is based on the use of pattern recognition techniques to match among corresponding parts of different views of the acquired scene. Depending on hypotheses or prior information about the sensor model, the motion model and/or the scene model, this information can be used to estimate global or local geometrical mapping functions between different images or different parts of them. These mapping functions contain relative motion parameters between the scene and the sensor(s) and can be used to integrate accordingly informations coming from the different sources to build a wider or even augmented representation of the scene. Accordingly, for their scene reconstruction and pose estimation capabilities, nowadays image registration techniques from multiple views are increasingly stirring up the interest of the scientific and industrial community. Depending on the applicative domain, accuracy, robustness, and computational payload of the algorithms represent important issues to be addressed and generally a trade-off among them has to be reached. Moreover, on-line performance is desirable in order to guarantee the direct interaction of the vision device with human actors or control systems. This thesis follows a general research approach to cope with these issues, almost independently from the scene content, under the constraint of rigid motions. This approach has been motivated by the portability to very different domains as a very desirable property to achieve. A general image registration approach suitable for on-line applications has been devised and assessed through two challenging case studies in different applicative domains. The first case study regards scene reconstruction through on-line mosaicing of optical microscopy cell images acquired with non automated equipment, while moving manually the microscope holder. By registering the images the field of view of the microscope can be widened, preserving the resolution while reconstructing the whole cell culture and permitting the microscopist to interactively explore the cell culture. In the second case study, the registration of terrestrial satellite images acquired by a camera integral with the satellite is utilized to estimate its three-dimensional orientation from visual data, for automatic guidance purposes. Critical aspects of these applications are emphasized and the choices adopted are motivated accordingly. Results are discussed in view of promising future developments.
Vergleichende computergestützte funktionsmorphologische Analyse an Molaren cercopithecoider Primaten
Resumo:
Die Analyse funktioneller Zusammenhänge zwischen Ernährung und Zahnmorphologie ist ein wichtiger Aspekt primatologischer und paläontologischer Forschung. Als überdauernder Teil des Verdauungssystems geben Zähne die bestmöglichen Hinweise auf die Ernährungsstrategien (ausgestorbener) Arten und eine Fülle weiterer Informationen. Aufgrund dessen ist es für die wissenschaftliche Arbeit von größter Bedeutung, die Zähne so detailliert und exakt wie möglich in ihrer gesamten Struktur zu erfassen. Bisher wurden zumeist zweidimensionale Parameter verwendet, um die komplexe Kronenmorphologie von Primatenmolaren vergleichend zu untersuchen. Die vorliegende Arbeit hatte das Ziel, Zähne verschiedener Arten von Altweltaffen mittels computerbasierter Methoden dreidimensional zu erfassen und neue Parameter zu definieren, mit denen die Form dieser Zähne objektiv erfasst und funktionell interpretiert werden kann. Mit einem Oberflächen-Scanner wurden die Gebisse einer Stichprobe von insgesamt 48 Primaten von fünf verschiedenen Arten eingescannt und mit Bildverarbeitungsmethoden so bearbeitet, dass dreidimensionale digitale Modelle einzelner Backenzähne zur Analyse vorlagen. Es wurden dabei sowohl Arten ausgewählt, die eine für ihre Gattung typische Ernährungsweise besitzen - also Frugivorie bei den Cercopithecinen und Folivorie bei den Colobinen - als auch solche, die eine davon abweichende Alimentation bevorzugen. Alle Altweltaffen haben sehr ähnliche Molaren. Colobinen haben jedoch höhere und spitzere Zahnhöcker, dünneren Zahnschmelz und scheinen ihre Zähne weniger stark abzukauen als die Meerkatzen. Diese Beobachtungen konnten mit Hilfe der neuen Parameter quantifiziert werden. Aus der 3D-Oberfläche und der Grundfläche der Zähne wurde ein Index gebildet, der die Stärke des Oberflächenreliefs angibt. Dieser Index hat bei Colobinen deutlich höhere Werte als bei Cercopithecinen, auch bei Zähnen, die schon stark abgekaut sind. Die Steilheit der Höcker und ihre Ausrichtung wurden außerdem gemessen. Auch diese Winkelmessungen bestätigten das Bild. Je höher der Blätteranteil an der Ernährung ist, desto höher sind die Indexwerte und umso steiler sind die Höcker. Besonders wichtig war es, dies auch für abgekaute Zähne zu bestätigen, die bisher nicht in funktionelle Analysen miteinbezogen wurden. Die Ausrichtung der Höckerseiten gibt Hinweise auf die Kaubewegung, die zum effizienten Zerkleinern der Nahrung notwendig ist. Die Ausrichtung der Höcker der Colobinen deutet darauf hin, dass diese Primaten flache, gleitende Kaubewegungen machen, bei denen die hohen Höcker aneinander vorbei scheren. Dies ist sinnvoll zum Zerschneiden von faserreicher Nahrung wie Blättern. Cercopithecinen scheinen ihre Backenzähne eher wie Mörser und Stößel zu verwenden, um Früchte und Samen zu zerquetschen und zu zermahlen. Je nachdem, was neben der hauptsächlichen Nahrung noch gekaut wird, unterscheiden sich die Arten graduell. Anders als bisher vermutet wurde, konnte gezeigt werden, dass Colobinen trotz des dünnen Zahnschmelzes ihre Zähne weniger stark abkauen und weniger Dentin freigelegt wird. Dies gibt eindeutige Hinweise auf die Unterschiede in der mechanischen Belastung, die während des Kauvorgangs auf die Zähne wirkt, und lässt sich gut mit der Ernährung der Arten in Zusammenhang bringen. Anhand dieser modellhaften Beobachtungen können in Zukunft ausgestorbene Arten hinsichtlich ihrer Ernährungsweise mit 3D-Techniken untersucht werden.
Resumo:
The purpose of this thesis is the atomic-scale simulation of the crystal-chemical and physical (phonon, energetic) properties of some strategically important minerals for structural ceramics, biomedical and petrological applications. These properties affect the thermodynamic stability and rule the mineral-environment interface phenomena, with important economical, (bio)technological, petrological and environmental implications. The minerals of interest belong to the family of phyllosilicates (talc, pyrophyllite and muscovite) and apatite (OHAp), chosen for their importance in industrial and biomedical applications (structural ceramics) and petrophysics. In this thesis work we have applicated quantum mechanics methods, formulas and knowledge to the resolution of mineralogical problems ("Quantum Mineralogy”). The chosen theoretical approach is the Density Functional Theory (DFT), along with periodic boundary conditions to limit the portion of the mineral in analysis to the crystallographic cell and the hybrid functional B3LYP. The crystalline orbitals were simulated by linear combination of Gaussian functions (GTO). The dispersive forces, which are important for the structural determination of phyllosilicates and not properly con-sidered in pure DFT method, have been included by means of a semi-empirical correction. The phonon and the mechanical properties were also calculated. The equation of state, both in athermal conditions and in a wide temperature range, has been obtained by means of variations in the volume of the cell and quasi-harmonic approximation. Some thermo-chemical properties of the minerals (isochoric and isobaric thermal capacity) were calculated, because of their considerable applicative importance. For the first time three-dimensional charts related to these properties at different pressures and temperatures were provided. The hydroxylapatite has been studied from the standpoint of structural and phonon properties for its biotechnological role. In fact, biological apatite represents the inorganic phase of vertebrate hard tissues. Numerous carbonated (hydroxyl)apatite structures were modelled by QM to cover the broadest spectrum of possible biological structural variations to fulfil bioceramics applications.
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.
Resumo:
Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.
Resumo:
Articular cartilage injuries and degeneration affect a large proportion of the population in developed countries world wide. Stem cells can be differentiated into chondrocytes by adding transforming growth factor-beta1 and dexamethasone to a pellet culture, which are unfeasible for tissue engineering purposes. We attempted to achieve stable chondrogenesis without any requirement for exogenous growth factors. Human mesenchymal stem cells were transduced with an adenoviral vector containing the SRY-related HMG-box gene 9 (SOX9), and were cultured in a three-dimensional (3D) hydrogel scaffold composite. As an additional treatment, mechanical stimulation was applied in a custom-made bioreactor. SOX9 increased the expression level of its known target genes, as well as its cofactors: the long form of SOX5 and SOX6. However, it was unable to increase the synthesis of sulfated glycosaminoglycans (GAGs). Mechanical stimulation slightly enhanced collagen type X and increased lubricin expression. The combination of SOX9 and mechanical load boosted GAG synthesis as shown by (35)S incorporation. GAG production rate corresponded well with the amount of (endogenous) transforming growth factor-beta1. Finally, cartilage oligomeric matrix protein expression was increased by both treatments. These findings provide insight into the mechanotransduction of mesenchymal stem cells and demonstrate the potential of a transcription factor in stem cell therapy.
Resumo:
A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.
Resumo:
This paper presents an automated solution for precise detection of fiducial screws from three-dimensional (3D) Computerized Tomography (CT)/Digital Volume Tomography (DVT) data for image-guided ENT surgery. Unlike previously published solutions, we regard the detection of the fiducial screws from the CT/DVT volume data as a pose estimation problem. We thus developed a model-based solution. Starting from a user-supplied initialization, our solution detects the fiducial screws by iteratively matching a computer aided design (CAD) model of the fiducial screw to features extracted from the CT/DVT data. We validated our solution on one conventional CT dataset and on five DVT volume datasets, resulting in a total detection of 24 fiducial screws. Our experimental results indicate that the proposed solution achieves much higher reproducibility and precision than the manual detection. Further comparison shows that the proposed solution produces better results on the DVT dataset than on the conventional CT dataset.
Resumo:
Three-dimensional rotational X-ray imaging with the SIREMOBIL Iso-C3D (Siemens AG, Medical Solutions, Erlangen, Germany) has become a well-established intra-operative imaging modality. In combination with a tracking system, the Iso-C3D provides inherently registered image volumes ready for direct navigation. This is achieved by means of a pre-calibration procedure. The aim of this study was to investigate the influence of the tracking system used on the overall navigation accuracy of direct Iso-C3D navigation. Three models of tracking system were used in the study: Two Optotrak 3020s, a Polaris P4 and a Polaris Spectra system, with both Polaris systems being in the passive operation mode. The evaluation was carried out at two different sites using two Iso-C3D devices. To measure the navigation accuracy, a number of phantom experiments were conducted using an acrylic phantom equipped with titanium spheres. After scanning, a special pointer was used to pinpoint these markers. The difference between the digitized and navigated positions served as the accuracy measure. Up to 20 phantom scans were performed for each tracking system. The average accuracy measured was 0.86 mm and 0.96 mm for the two Optotrak 3020 systems, 1.15 mm for the Polaris P4, and 1.04 mm for the Polaris Spectra system. For the Polaris systems a higher maximal error was found, but all three systems yielded similar minimal errors. On average, all tracking systems used in this study could deliver similar navigation accuracy. The passive Polaris system showed ? as expected ? higher maximal errors; however, depending on the application constraints, this might be negligible.
Resumo:
A new image-guided microscope using augmented reality overlays has been developed. Unlike other systems, the novelty of our design consists in mounting a precise mini and low-cost tracker directly on the microscope to track the motion of the surgical tools and the patient. Correctly scaled cut-views of the pre-operative computed tomography (CT) stack can be displayed on the overlay, orthogonal to the optical view or even including the direction of a clinical tool. Moreover, the system can manage three-dimensional models for tumours or bone structures and allows interaction with them using virtual tools, showing trajectories and distances. The mean error of the overlay was 0.7 mm. Clinical accuracy has shown results of 1.1-1.8 mm.
Resumo:
Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.
Resumo:
Myocardial perfusion imaging with SPECT (SPECT-MPI) and 64-slice CT angiography (CTA) are both established techniques for the noninvasive evaluation of coronary artery disease (CAD). Three-dimensional (3D) SPECT/CT image fusion may offer an incremental diagnostic value by integrating both sets of information. We report our first clinical experiences with fused 3D SPECT/CT in CAD patients. METHODS: Thirty-eight consecutive patients with at least 1 perfusion defect on SPECT-MPI (1-d adenosine stress/rest SPECT with (99m)Tc-tetrofosmin) and 64-slice CTA were included. 3D volume-rendered fused SPECT/CT images were generated and compared with the findings from the side-by-side analysis with regard to coronary lesion interpretation by assigning the perfusion defects to their corresponding coronary lesion. RESULTS: The fused SPECT/CT images added information on pathophysiologic lesion severity in 27 coronary stenoses (22%) of 12 patients (29%) (P<0.001). Among 40 equivocal lesions on side-by-side analysis, the fused interpretation confirmed hemodynamic significance in 14 lesions and excluded functional relevance in 10 lesions. In 3 lesions, assignment of perfusion defect and coronary lesion appeared to be reliable on side-by-side analysis but proved to be inaccurate on fused interpretation. Added diagnostic information by SPECT/CT was more commonly found in patients with stenoses of small vessels (P=0.004) and involvement of diagonal branches (P=0.01). CONCLUSION: In addition to being intuitively convincing, 3D SPECT/CT fusion images in CAD may provide added diagnostic information on the functional relevance of coronary artery lesions.
Resumo:
OBJECTIVES: To assess magnetic resonance (MR)-colonography (MRC) for detection of colorectal lesions using two different T1w three-dimensional (3D)-gradient-recalled echo (GRE)-sequences and integrated parallel data acquisition (iPAT) at a 3.0 Tesla MR-unit. MATERIALS AND METHODS: In this prospective study, 34 symptomatic patients underwent dark lumen MRC at a 3.0 Tesla unit before conventional colonoscopy (CC). After colon distension with tap water, 2 high-resolution T1w 3D-GRE [3-dimensional fast low angle shot (3D-FLASH), iPAT factor 2 and 3D-volumetric interpolated breathhold examination (VIBE), iPAT 3] sequences were acquired without and after bolus injection of gadolinium. Prospective evaluation of MRC was performed. Image quality of the different sequences was assessed qualitatively and quantitatively. The findings of the same day CC served as standard of reference. RESULTS: MRC identified all polyps >5 mm (16 of 16) in size and all carcinomas (4 of 4) correctly. Fifty percent of the small polyps =5 mm (4 of 8) were visualized by MRC. Diagnostic quality was excellent in 94% (384 of 408 colonic segments) using the 3D-FLASH and in 92% (376 of 408) for the VIBE. The 3D-FLASH sequence showed a 3-fold increase in signal-to-noise ratio (8 +/- 3.3 standard deviation (SD) in lesions without contrast enhancement (CE); 24.3 +/- 7.8 SD after CE). For the 3D-VIBE sequence, signal-to-noise ratio doubled in the detected lesions (147 +/- 54 SD without and 292 +/- 168 SD after CE). Although image quality was ranked lower in the VIBE, the image quality score of both sequences showed no statistical significant difference (chi > 0.6). CONCLUSIONS: MRC using 3D-GRE-sequences and iPAT is feasible at 3.0 T-systems. The high-resolution 3D-FLASH was slightly preferred over the 3D-VIBE because of better image quality, although both used sequences showed no statistical significant difference.