927 resultados para the anisotropy of the field


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the magnetic field intensity and speed of solar wind events is examined using ∼3 years of data from the ACE spacecraft. No preselection of coronal mass ejections (CMEs) or magnetic clouds is carried out. The correlation between the field intensity and maximum speed is shown to increase significantly when |B| > 18 nT for 3 hours or more. Of the 24 events satisfying this criterion, 50% are magnetic clouds, the remaining half having no ordered field structure. A weaker correlation also exists between southward magnetic field and speed. Sixteen of the events are associated with halo CMEs leaving the Sun 2 to 4 days prior to the leading edge of the events arriving at ACE. Events selected by speed thresholds show no significant correlation, suggesting different relations between field intensity and speed for fast solar wind streams and ICMEs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beetle assemblages and their response to plant community composition and architectural structure were monitored from 2002 to 2006 within arable field margins. Field margins were sown with either tussock grass and forbs, fine grass and forbs or grass only seed mixtures. After an establishment year, field margins were managed using standard sward cuts, scarification, or graminicide application. For predatory beetles, overall density was greatest where tussock grasses were included within the seed mixtures, while the densities of phytophagous beetles were greatest where forbs were present. Unexpectedly, species rarefaction curves suggested that phytophagous beetle species richness was greatest where field margins were established using a grass only seed mixture. The structure of the beetle assemblages, i.e., the relative abundances of individual species, was largely dependent on seed mixture, although margin management also played an important role. The results suggest that field margins established using seed mixtures containing tussock grasses and forbs would be expected to provide the greatest resources for beetles, at least at local scales. However, the use of a single standardised seed mixture for margin establishment would result in a homogenisation of beetle assemblages at a regional scale. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a model of the local field potential (LFP) based on the conservation of charge, the independence principle of ionic flows and the classical Hodgkin–Huxley (HH) type intracellular model of synaptic activity. Insights were gained through the simulation of the HH intracellular model on the nonlinear relationship between the balance of synaptic conductances and that of post-synaptic currents. The latter is dependent not only on the former, but also on the temporal lag between the excitatory and inhibitory conductances, as well as the strength of the afferent signal. The proposed LFP model provides a method for decomposing the LFP recordings near the soma of layer IV pyramidal neurons in the barrel cortex of anaesthetised rats into two highly correlated components with opposite polarity. The temporal dynamics and the proportional balance of the two components are comparable to the excitatory and inhibitory post-synaptic currents computed from the HH model. This suggests that the two components of the LFP reflect the underlying excitatory and inhibitory post-synaptic currents of the local neural population. We further used the model to decompose a sequence of evoked LFP responses under repetitive electrical stimulation (5 Hz) of the whisker pad. We found that as neural responses adapted, the excitatory and inhibitory components also adapted proportionately, while the temporal lag between the onsets of the two components increased during frequency adaptation. Our results demonstrated that the balance between neural excitation and inhibition can be investigated using extracellular recordings. Extension of the model to incorporate multiple compartments should allow more quantitative interpretations of surface Electroencephalography (EEG) recordings into components reflecting the excitatory, inhibitory and passive ionic current flows generated by local neural populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of case studies of large, transient, field-aligned ion flows in the topside ionosphere at high-latitudes have been reported, showing that these events occur during periods of frictional heating and/or intense particle precipitation. This study examines the frequency of occurrence of such events for the altitude range 200–500 km, based on 3 years of incoherent scatter data. Correlations of the upgoing ion flux at 400 km with ion and electron temperatures at lower altitudes are presented, together with a discussion of possible mechanisms for the production of such large flows. The influence of low-altitude electron precipitation on the production of these events is also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropy of thermal stresses in confined dusty plasmas is considered. It is shown that in a multi-component low-temperature plasma containing electrons, ions and dust, the complicated dependence of the ion viscosity on ion temperature gradients leads to a plasma equilibrium state with anisotropic pressure. This pressure anisotropy can be of the order of the ion pressure in some limiting cases, in which the ion Larmor radius or the ion mean free path are of the order of the characteristic length of the plasma nonuniformity. For a sufficiently large dust number density, they contribute to the plasma pressure anisotropy and to its spatial dependence. Currently, it is not yet clear whether this equilibrium state is stable or not. Under these conditions, some convective plasma flows can arise in confinement devices. Therefore, this question needs special consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an efficient numerical methodology for the 31) computation of incompressible multi-phase flows described by conservative phase-field models We focus here on the case of density matched fluids with different viscosity (Model H) The numerical method employs adaptive mesh refinements (AMR) in concert with an efficient semi-implicit time discretization strategy and a linear, multi-level multigrid to relax high order stability constraints and to capture the flow`s disparate scales at optimal cost. Only five linear solvers are needed per time-step. Moreover, all the adaptive methodology is constructed from scratch to allow a systematic investigation of the key aspects of AMR in a conservative, phase-field setting. We validate the method and demonstrate its capabilities and efficacy with important examples of drop deformation, Kelvin-Helmholtz instability, and flow-induced drop coalescence (C) 2010 Elsevier Inc. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent investigations of various quantum-gravity theories have revealed a variety of possible mechanisms that lead to Lorentz violation. One of the more elegant of these mechanisms is known as Spontaneous Lorentz Symmetry Breaking (SLSB), where a vector or tensor field acquires a nonzero vacuum expectation value. As a consequence of this symmetry breaking, massless Nambu-Goldstone modes appear with properties similar to the photon in Electromagnetism. This thesis considers the most general class of vector field theories that exhibit spontaneous Lorentz violation-known as bumblebee models-and examines their candidacy as potential alternative explanations of E&M, offering the possibility that Einstein-Maxwell theory could emerge as a result of SLSB rather than of local U(1) gauge invariance. With this aim we employ Dirac's Hamiltonian Constraint Analysis procedure to examine the constraint structures and degrees of freedom inherent in three candidate bumblebee models, each with a different potential function, and compare these results to those of Electromagnetism. We find that none of these models share similar constraint structures to that of E&M, and that the number of degrees of freedom for each model exceeds that of Electromagnetism by at least two, pointing to the potential existence of massive modes or propagating ghost modes in the bumblebee theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.