935 resultados para surrogate pair
Resumo:
We have used a tandem pair of supersonic nozzles to produce clean samples of CH3OO radicals in cryogenic matrices. One hyperthermal nozzle decomposes azomethane (CH3NNCH3) to generate intense pulses of CH3 radicals, While the second nozzle alternately fires a burst Of O-2/Ar at the 20 K matrix. The CH3/O-2/20 K argon radical sandwich acts to produce target methylperoxyl radicals: CH3 + O-2 --> CH3OO. The absorption spectra of the radicals are monitored with a Fourier transform infrared spectrometer. We report 10 of the 12 fundamental infrared bands of the methylperoxyl radical CH3OO, (X) over tilde (2)A", in an argon matrix at 20 K. The experimental frequencies (cm(-1)) and polarizations follow: the a' modes are 3032, 2957, 1448, 1410, 1180, 1109, 90, 492, while the a" modes are 3024 and 1434. We cannot detect the asymmetric CH3 rocking mode, nu(11), nor the torsion, nu(12). The infrared spectra of (CH3OO)-O-18-O-18, (CH3OO)-C-13, and CD3OO have been measured as well in order to determine the isotopic shifts. The experimental frequencies, {nu}, for the methylperoxyl radicals are compared to harmonic frequencies, {omega}, resulting from a UB3LYP/6-311G(d,p) electronic structure calculation. Linear dichroism spectra were measured with photooriented radical samples in order to establish the experimental polarizations of most vibrational bands. The methylperoxyl radical matrix frequencies listed above are within +/-2% of the gas-phase vibrational frequencies. A final set of vibrational frequencies for the H radical, are recommended. See also http://ellison.colorado.edu/methylperoxyl.
Resumo:
Semantic Space models, which provide a numerical representation of words’ meaning extracted from corpus of documents, have been formalized in terms of Hermitian operators over real valued Hilbert spaces by Bruza et al. [1]. The collapse of a word into a particular meaning has been investigated applying the notion of quantum collapse of superpositional states [2]. While the semantic association between words in a Semantic Space can be computed by means of the Minkowski distance [3] or the cosine of the angle between the vector representation of each pair of words, a new procedure is needed in order to establish relations between two or more Semantic Spaces. We address the question: how can the distance between different Semantic Spaces be computed? By representing each Semantic Space as a subspace of a more general Hilbert space, the relationship between Semantic Spaces can be computed by means of the subspace distance. Such distance needs to take into account the difference in the dimensions between subspaces. The availability of a distance for comparing different Semantic Subspaces would enable to achieve a deeper understanding about the geometry of Semantic Spaces which would possibly translate into better effectiveness in Information Retrieval tasks.
Resumo:
We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.
Resumo:
Protocols for bioassessment often relate changes in summary metrics that describe aspects of biotic assemblage structure and function to environmental stress. Biotic assessment using multimetric indices now forms the basis for setting regulatory standards for stream quality and a range of other goals related to water resource management in the USA and elsewhere. Biotic metrics are typically interpreted with reference to the expected natural state to evaluate whether a site is degraded. It is critical that natural variation in biotic metrics along environmental gradients is adequately accounted for, in order to quantify human disturbance-induced change. A common approach used in the IBI is to examine scatter plots of variation in a given metric along a single stream size surrogate and a fit a line (drawn by eye) to form the upper bound, and hence define the maximum likely value of a given metric in a site of a given environmental characteristic (termed the 'maximum species richness line' - MSRL). In this paper we examine whether the use of a single environmental descriptor and the MSRL is appropriate for defining the reference condition for a biotic metric (fish species richness) and for detecting human disturbance gradients in rivers of south-eastern Queensland, Australia. We compare the accuracy and precision of the MSRL approach based on single environmental predictors, with three regression-based prediction methods (Simple Linear Regression, Generalised Linear Modelling and Regression Tree modelling) that use (either singly or in combination) a set of landscape and local scale environmental variables as predictors of species richness. We compared the frequency of classification errors from each method against set biocriteria and contrast the ability of each method to accurately reflect human disturbance gradients at a large set of test sites. The results of this study suggest that the MSRL based upon variation in a single environmental descriptor could not accurately predict species richness at minimally disturbed sites when compared with SLR's based on equivalent environmental variables. Regression-based modelling incorporating multiple environmental variables as predictors more accurately explained natural variation in species richness than did simple models using single environmental predictors. Prediction error arising from the MSRL was substantially higher than for the regression methods and led to an increased frequency of Type I errors (incorrectly classing a site as disturbed). We suggest that problems with the MSRL arise from the inherent scoring procedure used and that it is limited to predicting variation in the dependent variable along a single environmental gradient.
Resumo:
I found it on eBay: ‘Jamaica GB used in 1858 6d x 2 sg Z5 used on piece A01 [Kingston] 1858’. Offered for sale by a stamp dealer on the Isle of Man was a scrap of blue paper, apparently part of an old envelope or torn off a sealed, folded letter, on which was stuck an attached pair of British postage stamps, each bearing the image of a young Queen Victoria
Resumo:
An experiment was conducted to investigate the process of reasoning about directions in an egocentric space. Each participant walked through a corridor containing an angular turn ranging in size from 0° to 90°, in 15° increments. A direction was given to participants at the entrance of the corridor and they were asked to answer this direction at the end of this corridor. Considering the fact that participants had to reason the direction in the featureless corridor, two hypotheses were proposed: (i) reasoning about directions falls into qualitative reasoning by using a small number of coarse angular categories (four 90° categories or eight 45° categories: 90° categories consist of front, back, left, right; 45° categories consist of 90° categories and the four intermediates) that reference axes generate; (ii) reasoning about directions would be done by recalling the rotation angle from the traveling direction to the direction that participants tried to answer. In addition, the configuration of reference axes that participants employed was examined. Both hypotheses were supported, and the data designated that reference axes consisted of eight directions: a pair of orthogonal axes and diagonals.
Resumo:
Sensing the mental, physical and emotional demand of a driving task is of primary importance in road safety research and for effectively designing in-vehicle information systems (IVIS). Particularly, the need of cars capable of sensing and reacting to the emotional state of the driver has been repeatedly advocated in the literature. Algorithms and sensors to identify patterns of human behavior, such as gestures, speech, eye gaze and facial expression, are becoming available by using low cost hardware: This paper presents a new system which uses surrogate measures such as facial expression (emotion) and head pose and movements (intention) to infer task difficulty in a driving situation. 11 drivers were recruited and observed in a simulated driving task that involved several pre-programmed events aimed at eliciting emotive reactions, such as being stuck behind slower vehicles, intersections and roundabouts, and potentially dangerous situations. The resulting system, combining face expressions and head pose classification, is capable of recognizing dangerous events (such as crashes and near misses) and stressful situations (e.g. intersections and way giving) that occur during the simulated drive.
Resumo:
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher’s equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations.
Resumo:
Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.
Resumo:
This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.
Resumo:
This paper reports on the use of a local order measure to quantify the spatial ordering of a quantum dot array (QDA). By means of electron ground state energy analysis in a quantum dot pair, it is demonstrated that the length scale required for such a measure to characterize the opto-electronic properties of a QDA is of the order of a few QD radii. Therefore, as local order is the primary factor that affects the opto-electronic properties of an array of quantum dots of homogeneous size, this order was quantified through using the standard deviation of the nearest neighbor distances of the quantum dot ensemble. The local order measure is successfully applied to quantify spatial order in a range of experimentally synthesized and numerically generated arrays of nanoparticles. This measure is not limited to QDAs and has wide ranging applications in characterizing order in dense arrays of nanostructures.
Resumo:
Multi-party key agreement protocols indirectly assume that each principal equally contributes to the final form of the key. In this paper we consider three malleability attacks on multi-party key agreement protocols. The first attack, called strong key control allows a dishonest principal (or a group of principals) to fix the key to a pre-set value. The second attack is weak key control in which the key is still random, but the set from which the key is drawn is much smaller than expected. The third attack is named selective key control in which a dishonest principal (or a group of dishonest principals) is able to remove a contribution of honest principals to the group key. The paper discusses the above three attacks on several key agreement protocols, including DH (Diffie-Hellman), BD (Burmester-Desmedt) and JV (Just-Vaudenay). We show that dishonest principals in all three protocols can weakly control the key, and the only protocol which does not allow for strong key control is the DH protocol. The BD and JV protocols permit to modify the group key by any pair of neighboring principals. This modification remains undetected by honest principals.
Resumo:
Motivated by privacy issues associated with dissemination of signed digital certificates, we define a new type of signature scheme called a ‘Universal Designated-Verifier Signature’ (UDVS). A UDVS scheme can function as a standard publicly-verifiable digital signature but has additional functionality which allows any holder of a signature (not necessarily the signer) to designate the signature to any desired designated-verifier (using the verifier’s public key). Given the designated-signature, the designated-verifier can verify that the message was signed by the signer, but is unable to convince anyone else of this fact. We propose an efficient deterministic UDVS scheme constructed using any bilinear group-pair. Our UDVS scheme functions as a standard Boneh-Lynn-Shacham (BLS) signature when no verifier-designation is performed, and is therefore compatible with the key-generation, signing and verifying algorithms of the BLS scheme. We prove that our UDVS scheme is secure in the sense of our unforgeability and privacy notions for UDVS schemes, under the Bilinear Diffie-Hellman (BDH) assumption for the underlying group-pair, in the random-oracle model. We also demonstrate a general constructive equivalence between a class of unforgeable and unconditionally-private UDVS schemes having unique signatures (which includes the deterministic UDVS schemes) and a class of ID-Based Encryption (IBE) schemes which contains the Boneh-Franklin IBE scheme but not the Cocks IBE scheme.
Resumo:
We propose a method of representing audience behavior through facial and body motions from a single video stream, and use these features to predict the rating for feature-length movies. This is a very challenging problem as: i) the movie viewing environment is dark and contains views of people at different scales and viewpoints; ii) the duration of feature-length movies is long (80-120 mins) so tracking people uninterrupted for this length of time is still an unsolved problem, and; iii) expressions and motions of audience members are subtle, short and sparse making labeling of activities unreliable. To circumvent these issues, we use an infrared illuminated test-bed to obtain a visually uniform input. We then utilize motion-history features which capture the subtle movements of a person within a pre-defined volume, and then form a group representation of the audience by a histogram of pair-wise correlations over a small-window of time. Using this group representation, we learn our movie rating classifier from crowd-sourced ratings collected by rottentomatoes.com and show our prediction capability on audiences from 30 movies across 250 subjects (> 50 hrs).
Resumo:
This project is led by scientists in conservation decision appraisal and brings together a group of experts working across the Lake Eyre Basin (LEB). The LEB covers a sixth of Australia, with an array of globally significant natural values that are threatened by invasive plants, among other things. Managers at various levels are investing in attempts to control, contain and eradicate these invasive plant species, under severe time and resources limitations. To date there has been no basin-wide assessment of which weed management strategies and locations provide the best investments for maximising outcomes for biodiversity per unit cost. Further, there has been no assessment of the extent of ecosystem intactness that may be lost without effective invasive plant species management strategies. Given that there are insufficient resources to manage all invasive plant species everywhere, this information has the potential to improve current investment decisions. Here, we provide a prioritisation of invasive plant management strategies in the LEB. Prioritisation was based on cost-effectiveness for biodiversity benefits. We identify the key invasive plant species to target to protect ecosystem intactness across the bioregions of the LEB, the level of investment required and the likely reduction in invasive species dominance gained per dollar spent on each strategy. Our focus is on strategies that are technically and socially feasible and reduce the likelihood that high impact invasive plant species will dominate native ecosystems, and therefore change their form and function. The outputs of this work are designed to help guide decision-making and further planning and investment in weed management for the Basin. Experts in weed management, policy-making, community engagement, biodiversity and natural values of the Basin, attended a workshop and agreed upon 12 strategies to manage invasive plants. The strategies focused primarily on 10 weeds which were considered to have a high potential for broad, significant impacts on natural ecosystems in the next 50 years and for which feasible management strategies could be defined. Each strategy consisted of one or more supporting actions, many of which were spatially linked to IBRA (Interim Biogeographical Regionalisation of Australia) bioregions. The first strategy was an over-arching recommendation for improved mapping, information sharing, education and extension efforts in order to facilitate the more specific weed management strategies. The 10 more specific weed management strategies targeted the control and/or eradication of the following high-impact exotic plants: mesquite, parkinsonia, rubber vine, bellyache bush, cacti, mother of millions, chinee apple, athel pine and prickly acacia, as well as a separate strategy for eradicating all invasive plants from one key threatened ecological community, the GAB (Great Artesian Basin dependant) mound springs. Experts estimated the expected biodiversity benefit of each strategy as the reduction in area that an invasive plant species is likely to dominate in over a 50-year period, where dominance was defined as more than 30% coverage at a site. Costs were estimated in present day terms over 50 years largely during follow up discussions post workshop. Cost-effectiveness was then calculated for each strategy in each bioregion by dividing the average expected benefit by the average annual costs. Overall, the total cost of managing 12 invasive plant strategies over the next 50 years was estimated at $1.7 billion. It was estimated that implementation of these strategies would result in a reduction of invasive plant dominance by 17 million ha (a potential 32% reduction), roughly 14% of the LEB. If only targeting Weeds of National Significance (WONS), the total cost was estimated to be $113 million over the next 50 years. Over the next 50 years, $2.3 million was estimated to eradicate all invasive plant species from the Great Artesian Basin Mound Springs threatened ecological community. Prevention and awareness programs were another key strategy targeted across the Basin and estimated at $17.5 million in total over 50 years. The cost of controlling, eradicating and containing buffel grass were the most expensive, over $1.5 billion over 50 years; this strategy was estimated to result in a reduction in buffel grass dominance of a million ha in areas where this species is identified as an environmental problem. Buffel grass has been deliberately planted across the Basin for pasture production and is by far the most widely distributed exotic species. Its management is contentious, having economic value to many graziers while posing serious threats to biodiversity and sites of high cultural and conservation interest. The strategy for containing and locally eradicating buffel grass was a challenge to cost based on expert knowledge, possibly because of the dual nature of this species as a valued pastoral grass and environmental weed. Based on our conversations with experts, it appears that control and eradication programs for this species, in conservation areas, are growing rapidly and that information on the most cost-effective strategies for this species will continue to develop over time. The top five most cost-effective strategies for the entire LEB were for the management of: 1) parkinsonia, 2) chinee apple, 3) mesquite, 4) rubber vine and 5) bellyache bush. Chinee apple and mother of millions are not WONS and have comparatively small populations within the semi-arid bioregions of Queensland. Experts felt that there was an opportunity to eradicate these species before they had the chance to develop into high-impact species within the LEB. Prickly acacia was estimated to have one of the highest benefits, but the costs of this strategy were high, therefore it was ranked 7th overall. The buffel grass strategy was ranked the lowest (10th) in terms of cost effectiveness. The top five most cost-effective strategies within and across the bioregions were the management of: 1) parkinsonia in the Channel Country, 2) parkinsonia in the Desert Uplands, 3) mesquite in the Mitchell Grass Downs, 4) parkinsonia in the Mitchell Grass Downs, and 5) mother of millions in the Desert Uplands. Although actions for several invasive plant species like parkinsonia and prickly acacia were concentrated in the Queensland part of the LEB, the actions involved investing in containment zones to prevent the spread of these species into other states. In the NT and SA bioregions of the LEB, the management of athel pine, parkinsonia and cacti were the main strategies. While outside the scientific research goals of study, this work highlighted a number of important incidental findings that led us to make the following recommendations for future research and implementation of weed management in the Basin: • Ongoing stakeholder engagement, extension and participation is required to ensure this prioritisation effort has a positive impact in affecting on-ground decision making and planning. • Short term funding for weed management was identified as a major reason for failure of current efforts, hence future funding needs to be secure and ongoing. • Improved mapping and information sharing is essential to implement effective weed management. • Due to uncertainties in the outcomes and impacts of management options, strategies should be implemented as part of an adaptive management program. The information provided in this report can be used to guide investment for controlling high-impact invasive plant species for the benefits of biodiversity conservation. We do not present a final prioritisation of invasive plant strategies for the LEB, and we have not addressed the cultural, socio-economic or spatial components necessary for an implementation plan. Cost-effectiveness depends on the objectives used; in our case we used the intactness of ecosystems as a surrogate for expected biodiversity benefits, measured by the extent that each invasive plant species is likely to dominate in a bioregion. When other relevant factors for implementation are considered the priorities may change and some actions may not be appropriate in some locations. We present the costs, ecological benefits and cost-effectiveness of preventing, containing, reducing and eradicating the dominance of high impact invasive plants through realistic management actions over the next 50 years. In doing so, we are able to estimate the size of the weed management problem in the LEB and provide expert-based estimates of the likely outcomes and benefits of implementing weed management strategies. The priorities resulting from this work provide a prospectus for guiding further investment in management and in improving information availability.