976 resultados para surface defects
Resumo:
The dispersive characteristics of Alfvdn Surface Waves (ASW) along a moving plasma surrounded by a stationary plasma is discussed. The stability curves for the symmetric and the asymmetric modes are also discussed.
Resumo:
The low frequency surface magnetoplasmon-type polaritons in the Faraday configuration will propagate as generalized surface modes if 4ε∞/(ε∞ − 1)2 greater-or-equal, slanted μ2 and as pure surface modes if this inequality is reversed. The possibility of using the low frequency surface waves as a suitable probe for measuring the carrier concentration of a given sample is discussed.
Resumo:
We study small vibrations of cantilever beams contacting a rigid surface. We study two cases: the first is a beam that sags onto the ground due to gravity, and the second is a beam that sticks to the ground through reversible adhesion. In both cases, the noncontacting length varies dynamically. We first obtain the governing equations and boundary conditions, including a transversality condition involving an end moment, using Hamilton's principle. Rescaling the variable length to a constant value, we obtain partial differential equations with time varying coefficients, which, upon linearization, give the natural frequencies of vibration. The natural frequencies for the first case (gravity without adhesion) match that of a clamped-clamped beam of the same nominal length; frequencies for the second case, however, show no such match. We develop simple, if atypical, single degree of freedom approximations for the first modes of these two systems, which provide insights into the role of the static deflection profile, as well as the end moment condition, in determining the first natural frequencies of these systems. Finally, we consider small transverse sinusoidal forcing of the first case and find that the governing equation contains both parametric and external forcing terms. For forcing at resonance, w find that either the internal or the external forcing may dominate.
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Resumo:
EELS and XPS studies show the presence of both adsorbed atomic and molecular oxygen at low temperatures. The nature of the oxide layer formed on the surface has been characterized by angular dependent and variable temperature EELS. A loss peak around 550 cm−1 is assigned to an electronic transition.
Resumo:
A monolithic surface acoustic wave (SAW) resonator operating at 156 MHz, in which the frequency controlling element is a Fabry–Perot type of SAW resonator and the gain element is a monolithic SAW amplifier (SiOx/InSb/SiOx structure located inside the SAW resonator cavity) is described and experimental details presented. Based on the existing experimental data, an uhf monolithic ring resonator oscillator is proposed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
The effect of injection and suction on the generalised vortex flow of a steady laminar incompressible fluid over a stationary infinite disc with or without magnetic field under boundary-layer approximations has been studied. The coupled nonlinear ordinary differential equations governing the self-similar flow have been numerically solved using the finite-difference scheme. The results indicate that the injection produces a deeper inflow layer and de-stabilises the motion while suction or magnetic field suppresses the inflow layer and produces stability. The effect of decreasingn, the parameter characterising the nature of vortex flow, is similar to that of increasing the injection rate.
Resumo:
Electron energy loss spectroscopy (EELS) has been employed to monitor surface conductivity changes in YBa2Cu3O7 as a function of temperature. Concomitant use of x-ray photoelectron spectroscopy (XPS) establishes that the formation of oxygen dimers with lowering of temperature is accompanied by a simultaneous increase of surface conductivity.
Resumo:
The intensity of inelastically scattered electrons measured by electron energy loss spectroscopy has been employed to monitor the surface conductivity of YBa2Cu3O6.9 as a function of temperature. The study shows a drastic change in surface conductivity precedes the superconducting transition at 90K. The increase in surface conductivity is accompanied by the formation of dimerized holes in the oxygen derived p-band. This phenomenon is not observed in the non-superconducting YBa2Cu3O6.2.
Resumo:
Acoustic surface waves can be generated along the plasma column in pressure equilibrium with a gas blanket in the presence of the uniform axial magnetic field. Unlike the case of volume-acoustic-wave generation in the magnetoplasma reported recently, the threshold magnetic field required for the generation of acoustic surface waves increases with increasing gas pressure.
Resumo:
The impact of three cropping histories (sugarcane, maize and soybean) and two tillage practices (conventional tillage and direct drill) on plant-parasitic and free-living nematodes in the following sugarcane crop was examined in a field trial at Bundaberg. Soybean reduced populations of lesion nematode (Pratylenchus zeae) and root-knot nematode (Meloidogyne javanica) in comparison to previous crops of sugarcane or maize but increased populations of spiral nematode (Helicotylenchus dihystera) and maintained populations of dagger nematode (Xiphinema elongatum). However the effect of soybean on P zeae and M. javanica was no longer apparent 15 weeks after planting sugarcane, while later in the season, populations of these nematodes following soybean were as high as or higher than maize or sugarcane. Populations of P zeae were initially reduced by cultivation but due to strong resurgence tended to be higher in conventionally tilled than direct drill plots at the end of the plant crop. Even greater tillage effects were observed with M. javanica and X. elongatum, as nematode populations were significantly higher in conventionally tilled than direct drill plots late in the season. Populations of free-living nematodes in the upper 10 cm of soil were initially highest following soybean, but after 15, 35 and 59 weeks were lower than after sugarcane and contained fewer omnivorous and predatory nematodes. Conventional tillage increased populations of free-living nematodes in soil in comparison to direct drill and was also detrimental to omnivorous and predatory nematodes. These results suggest that crop rotation and tillage not only affect plant-parasitic nematodes directly, but also have indirect effects by impacting on natural enemies that regulate nematode populations. More than 2 million nematodes/m(2) were often present in crop residues on the surface of direct drill plots. Bacterial-feeding nematodes were predominant in residues early in the decomposition process but fungal-feeding nematodes predominated after 15 weeks. This indicates that fungi become an increasingly important component of the detritus food web as decomposition proceeds, and that that the rate of nutrient cycling decreases with time. Correlations between total numbers of free-living nematodes and mineral N concentrations in crop residues and surface soil suggested that the free-living nematode community may provide an indication of the rate of mineralisation of N from organic matter.
Resumo:
In 2002, AFL Queensland and the Brisbane Lions Football Club approached the Department of Primary Industries and Fisheries (Queensland) for advice on improving their Premier League sports fields. They were concerned about player safety and dissatisfaction with playing surfaces, particularly uneven turf cover and variable under-foot conditions. They wanted to get the best from new investments in ground maintenance equipment and irrigation infrastructure. Their sports fields were representative of community-standard, multi-use venues throughout Australia; generally ‘natural’ soil fields, with low maintenance budgets, managed by volunteers. Improvements such as reconstruction, drainage, or regular re-turfing are generally not affordable. Our project aimed to: (a) Review current world practice and performance benchmarks; (b) Demonstrate best-practice management for community-standard fields; (c) Adapt relevant methods for surface performance testing; (d) Assess current soils, and investigate useful amendments; (e) Improve irrigation system performance; and (e) Build industry capacity and encourage patterns for ongoing learning. Most global sports field research focuses on elite, sand-based fields. We adjusted elite standards for surface performance (hardness, traction, soil moisture, evenness, sward cover/height) and maintenance programs, to suit community-standard fields with lesser input resources. In regularly auditing ground conditions across 12 AFLQ fields in SE QLD, we discovered surface hardness (measured by Clegg Hammer) was the No. 1 factor affecting player safety and surface performance. Other important indices were turf coverage and surface compaction (measured by penetrometer). AFLQ now runs regularly audits affiliated fields, and closes grounds with hardness readings greater than 190 Gmax. Aerating every two months was the primary mechanical practice improving surface condition and reducing hardness levels to < 110 Gmax on the renovated project fields. With irrigation installation, these fields now record surface conditions comparable to elite fields. These improvements encouraged many other sporting organisations to seek advice / assistance from the project team. AFLQ have since substantially invested in an expanded ground improvement program, to cater for this substantially increased demand. In auditing irrigation systems across project fields, we identified low maintenance (with < 65% of sprinklers operating optimally) as a major problem. Retrofitting better nozzles and adjusting sprinklers improved irrigation distribution uniformity to 75-80%. Research showed that reducing irrigation frequency to weekly, and preparedness to withhold irrigation longer after rain, reduced irrigation requirement by 30-50%, compared to industry benchmarks of 5-6 ML/ha/annum. Project team consultation with regulatory authorities enhanced irrigation efficiency under imposed regional water restrictions. Laboratory studies showed incorporated biosolids / composts, or topdressed crumb rubber, improved compaction resistance of soils. Field evaluations confirmed compost incorporation significantly reduced surface hardness of high wear areas in dry conditions, whilst crumb rubber assisted turf persistence into early winter. Neither amendment was a panacea for poor agronomic practices. Under the auspices of the project Trade Mark Sureplay®, we published > 80 articles, and held > 100 extension activities involving > 2,000 participants. Sureplay® has developed a multi-level curator training structure and resource materials, subject to commercial implementation. The partnerships with industry bodies (particularly AFLQ), frequent extension activities, and engagement with government/regulatory sectors have been very successful, and are encouraged for any future work. Specific aspects of sports field management for further research include: (a) Understanding of factors affecting turf wear resistance and recovery, to improve turf persistence under wear; (b) Simple tests for pinpointing areas of fields with high hardness risk; and (c) Evaluation of new irrigation infrastructure, ‘water-saving’ devices, and irrigation protocols, in improving water use and turf cover outcomes.
Resumo:
Surface oxidation of Cd, In, Sn and Sb has been investigated by employing valence bands, metal 4d levels and plasmon bands in X-ray photoelectron spectra. O(KLL), metal M4N45N45, and plasmon transitions in electron-induced Auger spectra as well as Auger transitions due to the metal (metal oxide) and plasmons in X-ray-induced Auger spectra. The surface oxides are In2O4, CdO and a mixture of SnO and SnO2 in the case of In. Cd and Sn respectively. The facility of surface oxidation is found to vary as In>Cd>Sn>Sb. Inter-atomic Auger transitions involving oxygen valence bands have been identified on oxidized surfaces of Cd and In.
Resumo:
Surface segregation of Ge is seen in the Cu-5at%Ge alloy with an activation enthalpy equal to 17 kJ/mol. Oxidation of the alloy in the temperature range 400 to 600 K shows the formation of Cu2O and GeO which on further heating in vacuum at 650 K converts to GeO2 with the reduction of Cu2O to Cu.
Resumo:
Live recombinant Saccharomyces cerevisiae yeast expressing the envelope antigen of Japanese encephalitis virus (JEV) on the outer mannoprotein layer of the cell wall were examined for their ability to induce antigen-specific antibody responses in mice. When used as a modelantigen, parenteral immunization of mice with surface-expressing GFP yeast induced a strong anti-GFP antibody response in the absence of adjuvants. This antigen delivery approach was then used for a more stringent system, such as the envelope protein of JEV, which is a neurotropic virus requiring neutralizing antibodies for protection.Although 70% of cells were detected to express the total envelope protein on the surface by antibodies raised to the bacterially expressed protein, polyclonal anti-JEV antibodies failed to react with them. In marked contrast, yeast expressing the envelope fragments 238-398, 373-399 and 373-500 in front of a Gly-Ser linker were detected by anti-JEV antibodies as well as a monoclonal antibody but not by antibodies raised to the bacterially expressed protein. Immunization of mice with these surface-expressing recombinants resulted in a strong antibody response. However, the antibodies failed to neutralize the virus, although the fragments were selected based on neutralizing determinants.