822 resultados para substrate integrated waveguide (SIW)
Resumo:
The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.
Resumo:
The HIRDLS instrument contains 21 spectral channels spanning a wavelength range from 6 to 18mm. For each of these channels the spectral bandwidth and position are isolated by an interference bandpass filter at 301K placed at an intermediate focal plane of the instrument. A second filter cooled to 65K positioned at the same wavelength but designed with a wider bandwidth is placed directly in front of each cooled detector element to reduce stray radiation from internally reflected in-band signals, and to improve the out-of-band blocking. This paper describes the process of determining the spectral requirements for the two bandpass filters and the antireflection coatings used on the lenses and dewar window of the instrument. This process uses a system throughput performance approach taking the instrument spectral specification as a target. It takes into account the spectral characteristics of the transmissive optical materials, the relative spectral response of the detectors, thermal emission from the instrument, and the predicted atmospheric signal to determine the radiance profile for each channel. Using this design approach an optimal design for the filters can be achieved, minimising the number of layers to improve the in-band transmission and to aid manufacture. The use of this design method also permits the instrument spectral performance to be verified using the measured response from manufactured components. The spectral calculations for an example channel are discussed, together with the spreadsheet calculation method. All the contributions made by the spectrally active components to the resulting instrument channel throughput are identified and presented.
Resumo:
A new technique is reported for micro-machining millimetre-wave rectangular waveguide components. S-parameter measurements on these structures show that they achieve lower loss than those produced using any other on-chip fabrication technique, have highly accurate dimensions, are physically robust, and are cheap and easy to manufacture.
Resumo:
Background: Vagal stimulation in response to nutrients is reported to elicit an array of digestive and endocrine responses, including an alteration in postprandial lipid metabolism. Objective: The objective of this study was to assess whether neural stimulation could alter hormone and substrate metabolism during the late postprandial phase, with implications for body fat mobilization. Design: Vagal stimulation was achieved by using the modified sham feeding (MSF) technique, in which nutrients are chewed and tasted but not swallowed. Ten healthy subjects were studied on 3 separate occasions, 4 wk apart. Five hours after a high-fat breakfast (56 g fat), the subjects were given 1 of 3 test meals allocated in random order: water, a lunch containing a modest amount of fat (38 g), or MSF (38 g fat). Blood was collected for 3 h poststimulus for hormone and metabolite analyses. Results: Plasma insulin and pancreatic polypeptide concentrations peaked at 250% and 209% of baseline concentrations within 15 min of MSF. The plasma glucose concentration increased significantly (P = 0.038) in parallel with the changes observed in the plasma insulin concentration. The nonesterified fatty acid concentration was significantly suppressed (P = 0.006); maximum suppression occurred at a mean time of 114 min after MSF. This fall in nonesterified fatty acid was accompanied by a fall in the plasma glucagon concentration from 122 to 85 pmol/L (P = 0.018) at a mean time of 113 min after MSF. Conclusions: Effects on substrate metabolism after MSF in the postprandial state differ from those usually reported in the postabsorptive state. The effects of MSF were prolonged beyond the period of the cephalic response and these may be relevant for longer-term metabolic regulation.
Resumo:
A novel technique for micro-machining millimeter and submillimeter-wave rectangular waveguide components is reported. These are fabricated in two halves which simply snap together, utilizing locating pins and holes, and are physically robust, and cheap, and easy to manufacture. In addition, S-parameter measurements on these structures are reported for the first time and display lower loss than previously reported micro-machined rectangular waveguides.
Resumo:
A quasi-optical de-embedding technique for characterizing waveguides is demonstrated using wideband time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time domain responses were discretised and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an ARX as well as with a state space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize signal distortion and the noise propagating in the ARX and subspace models. The model identification procedure requires isolation of the phase delay in the structure and therefore the time-domain signatures must be firstly aligned with respect to each other before they are compared. An initial estimate of the number of propagating modes was provided by comparing the measured phase delay in the structure with theoretical calculations that take into account the physical dimensions of the waveguide. Models derived from measurements of THz transients in a precision WR-8 waveguide adjustable short will be presented.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.
Resumo:
Integration of natural ventilation and daylighting in a single installation would make both technologies more attractive. One method for the integration is the use of concentric light pipe and ventilation stack. By constructing the light pipe using dichroic materials, the infrared part of the solar radiation is allowed to be transmitted to the stack but the visible light is guided by the light pipe into a room. The heat gain to the interior can be reduced and the thermal stack effect strengthened. Work presented here involved the experimental and computational evaluation of dichroic materials for enhancing both natural stack ventilation and daylighting. The transmittance of a dichroic light pipe was found to be similar to that of a light pipe with a 95% specular reflectance. The infra-red radiation transmitted through the dichroic material into a passive stack was found to enhance the natural ventilation flow by up to 14%. The effect is greater in summer than in winter, which is highly desirable as there is often a lack of driving force for natural stack ventilation in summer.
Resumo:
This paper reviews the growing interest in an integrated construction project model, and examines the fundamental concept of an integrated project model by discussing the various definitions that have evolved as well as the various approaches to its development. The nature of collaborative communications that the integrated project model needs to support is also discussed, as are the enabling information and communications technologies that may have a role in the realization of the model. The paper concludes with some thoughts on the future development of the integrated construction project model.