899 resultados para stud welding
Resumo:
Located in Apiaí, Vale do Ribeira, southern region of São Paulo state, the Usina do Calabouço areas (CIEM / CPRM) and Morro do Ouro (Parque Municipal do Morro do Ouro), were targeted for stud ies due to its old buildings, respectively a foundry in lead ore, called Experimental de Chumbo e Prata (Usina Calabouço), and a gold mine with processing plant of the gold-bearing ore produced there. Nowadays, the areas are used for public visitation, and in both places the rests of the buildings remains. Particularly in the CIEM/CPRM, due to the materials witch was produced before, it can suggest the existence of anomalous amounts of the involved metals (CIEM / CPRM) and possible contaminations by chemical products used in the improvement of the auriferous ore (P. M. Morro do Ouro). These potential contamination were confirmed with geochemical survey of soils and current sediments accomplished in both areas, for the elements arsenic, cadmium, lead, copper, mercury, silver and zinc, which were used as parameters guiding values for soil and groundwater the state of São Paulo (CETESB), and watershed values stipulated by CPRM (poor, background and anomalous), in it rising geochemistry during Folha Apiaí's execution (SG-22-X-B-V).
Resumo:
This work examines the possible effects of successive repair procedures on the microstructure of welded steel SAE 4130 by TIG welding process. Discussions and results were made about the metallographic analysis , non-metallic inclusions and microhardness tests , which were conducted on samples taken from the cradle engine component after the end of its life , a model airplane T-27 Tucano , made by EMBRAER and belonging were performed FAB . The choice of such component is due to the fact that this is critical to flight safety since it provides support for the aircraft engine . Thus regions of the weld metal , base metal and heat affected , with samples of the original weld bead , free of weld bead and also with four rework procedures for TIG welding zone were analyzed . It was found that after the fourth rework there is an increase in the amount of martensite , which may weaken the material with respect to resistance to fatigue. It was also found that the regions of the heat affected zone and weld metal have higher microhardness values when compared to those found in the base metal due to favoring the formation of ferritic and tempered martensite microstructures . Moreover, a welding process promotes a region with less non-metallic inclusions than metal base , which also explains the difference in the results obtained
Resumo:
The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading
Resumo:
Airplane Motor Cradles have a complex geometry, since they require different conbinations between different tubes and TIG welded in several angles. In T-25 aircraft and Universal T-27 Tucano (EMBRAER / FAB), besides having to bear the engine balance, these components maintain fixed the nose landing gear in another extremity. They are considered critical to flight safety, and for this reason, the aviation standards are extremely rigid in their production, imposing a zero index” of defects on the final weld metal quality. These structures may be containing an historical of welding repairs, whose effects on their structural integrity are not computed. In this work we analyzed the standardised AISI 4130 steel and the raw steel of tubes to the Airplane Motor Cradles. First of all, microscopy and microanalysis of the base steel, then we analyzed the effects of the TIG weld. Tensile testing was conducted to measure the difference between the mechanical properties of standardised steel and without this treatment
Resumo:
The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading
Resumo:
In our country, the majority of freight and people by road happens municipal, state and federal. Thus, the heavy vehicles like buses and trucks are the main means of transporting people and cargo. This graduate work aims to study the process of manufacturing wheels for trucks, because we can see the lack of literature on the manufacturing process of wheels and also the importance of the processes used to manufacture wheels, such as lamination, stamping, puckering, machining, welding and painting
Resumo:
The number of piping in an industry is high. Through this piping are conducted several kind of products at several temperature and pressure conditions. In a chemical company, the piping quantity conducting harmful chemical products to human health and to the environment is higher. Nowadays the theme sustainability is often mentioned and harm to environment may cause irreversible damage to the human being, to the fauna, to the flora and to company´s credibility. In this context, controlling over the piping to avoid accidents is mandatory. The objective of this monograph is to create a procedure which enables the chemical companies piping traceability. This monograph analyses the several existent traceability system in the three economy sectors and approaches the technical question of industrial piping in order to create a procedure that achieves its objectives as a technical document and at the same time be economically feasible, with low complexibility level and high practicability. Some possibilities to elaborate this procedure had been studied, as the creation of an alphanumeric code and making with a chisel in the pipeline based on ASTM F2897 and the use of chips to store the information. However, the procedure which best meet the requirement as low cost and high applicability is filling out an electronic plan with information about welding process, welding certification, welding consumables and inspections
Resumo:
The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading
Resumo:
The automobile industry is increasingly interested in reducing vehicle weight for greater speed, lower fuel consumption and emissions, through innovation of materials and processes. One way to do this is to seek the replacement of conventional processes by the use of structural adhesives. Structural adhesives are highly resistant materials, which can replace rivets, bolts and welds allowing the substrate / adhesive assemble is stronger than the substrate itself. One of the major advantages of gluing with respect to welding is its esthetic appearance, since it does not leave marks. For this reason, parts to be soldered require a minimum thickness so that the marks do not appear, since the pieces from gluing have no restriction as to the thickness. By replacing the vibration welding process for gluing process of the instrument panel parts of an automobile, one obtains a reduction of the thickness of the parts and therefore it decreases the weight of the car. This work aims to study the various structural adhesives that already exist on the market to be applied on the instrument panel. The mechanical test performed to measure the maximum adhesive strength was the Lap Shear Test at 23°C (room temperature), -35°C and 85°C. The types of adhesives used were the hot-melt and the bi-component. By the results obtained, it is in favor using the bi-component for application to the union of instrument panel parts
Resumo:
On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT N80, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of non-metallic inclusions in the welded joint
Resumo:
Because the high consumption of welded pipe for exploration and conduction oil and gas, optimization of manufacturing processes is necessary to obtain better productivity, efficiency and cost reduction. The objective of this study is to analyze the forms of heat transfer during the welding of pipes using longitudinal submerged arc process them to propose a model for the temperature distribution in the welded region. For this analysis are addressed as the heat transfer modes operate in the specified welding process and the necessary considerations for the mathematical model were obtained. The calculations were performed and the simulations needed to obtain the temperature distribution in the tube were carried out. Therefore, the practice was satisfactory and the results showed a range of temperatures along the pipe for a particular model and the future suggestions for improvement of this work
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The aim of this work was to evaluate the corrosion resistance of AuPdAgIn alloy, submitted to laser beam welding, in 0.9% NaCl solution, using electrochemical techniques. Measures of the open circuit potential (OCP) versus time were applied to electrochemical experiments, as well as potentiodynamic direct scanning (PDS) and electrochemical impedance spectroscopy (EIS) on AuPdAgIn alloy, submitted to laser beam welding in 0.9% NaCl solution. Some differences observed in the microstructure can explain the results obtained for corrosion potential, Ecorr, and corrosion resistance, Rp. EIS spectra have been characterized by distorted capacitive components, presenting linear impedance at low frequencies, including a non-uniform diffusion. The area of the laser weld presented corrosion potential slightly superior when compared to the one of the base metal. The impedance results suggest the best resistant corrosion behavior for laser weld than base metal region. This welding process is a promising alternative to dental prostheses casting.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
In contemporary industrial, welding processes are widely used, this is the most important process of joining metals used industrially. The welding can be used to build simple structures, like doors and gates for instance, in the same way can be used in situations of high responsibility, such as the nuclear industry and oil industry. Dissimilar welding is a case of welded joints, is characterized by the junction between different materials, for this case, stainless steel and carbon steel that are widely used in steam lines, power plants, nuclear reactors, petrochemical plants. Because their different mechanical and corrosive properties, the join, stainless steel with carbon steel, not only meets environmental requirements and also reduces cost. By using penetrating liquid tests, macrograph, hardness and tensile test was compared the possibility of replacing the current use of 309 rods as filler metal in dissimilar welding between carbon steel and stainless steel by add-on material carbon steel essentially, in this case E7018 coated electrode was used, but without the coating. After analysis of the results and for comparison, was proposed with some certainty that it is possible to replace the addition of materials, thus leading economy in this process widely used in the modern industry