983 resultados para stiffness
Resumo:
In order to further investigate nanoindentation data of film-substrate systems and to learn more about the mechanical properties of nanometer film-substrate systems, two kinds of films on different substrate systems have been tested with a systematic variation in film thickness and substrate characteristics. The two kinds of films are aluminum and tungsten, which have been sputtered on to glass and silicon substrates, respectively. Indentation experiments were performed with a Nano Indent XP II with indenter displacements typically about two times the nominal film thicknesses. The resulting data are analyzed in terms of load-displacement curves and various comparative parameters, such as hardness, Young's modulus, unloading stiffness and elastic recovery. Hardness and Young's modulus are investigated when the substrate effects are considered. The results show how the composite hardness and Young's modulus are different for different substrates, different films and different film thicknesses. An assumption of constant Young's modulus is used for the film-substrate system, in which the film and substrate have similar Young's moduli. Composite hardness obtained by the Joslin and Oliver method is compared with the directly measured hardness obtained by the Oliver and Pharr method.
Resumo:
Piezoelectric actuators are distributed on both side of a rectangular wing model,and the possibility of improvement of aircraft rolling power is investigated. The difference between the model with aileron deflection and the model without aileron (fictitious control surface, FCS) is studied. The analytical results show that these two cases are substantial different. In aileron deflection case, the aeroelastic effect is disadvantageous, so the structural stiffness should be high until the electrical voltage is not necessary. But in the case of FCS,the aeroelastic effect is advantageous and it means that lower structural stiffness can lead to lower voltage. Compared with aileron project, the FCS project can save structure weight.
Resumo:
In this paper, the possible error sources of the composite natural frequencies due to modeling the shape memory alloy (SMA) wire as an axial force or an elastic foundation and anisotropy are discussed. The great benefit of modeling the SMA wire as an axial force and an elastic foundation is that the complex constitutive relation of SMA can be avoided. But as the SMA wire and graphite-epoxy are rigidly bonded together, such constraint causes the re-distribution of the stress in the composite. This, together with anisotropy, which also reduces the structural stiffness can cause the relatively large error between the experimental data and theoretical results.
Resumo:
A method of determining the micro-cantilever residual stress gradients by studying its deflection and curvature is presented. The stress gradients contribute to both axial load and bending moment, which, in prebuckling regime, cause the structural stiffness change and curving up/down, respectively. As the axial load corresponds to the even polynomial terms of stress gradients and bending moment corresponds to the odd polynomial terms, the deflection itself is not enough to determine the axial load and bending moment. Curvature together with the deflection can uniquely determine these two parameters. Both linear analysis and nonlinear analysis of micro-cantilever deflection under axial load and bending moment are presented. Because of the stiffening effect due to the nonlinearity of (large) deformation, the difference between linear and nonlinear analyses enlarges as the micro-cantilever deflection increases. The model developed in this paper determines the resultant axial load and bending moment due to the stress gradients. Under proper assumptions, the stress gradients profile is obtained through the resultant axial load and bending moment.
Resumo:
The generation, jet length and flow-regime change characteristics of argon plasma issuing into ambient air have been experimentally examined. Different torch structures have been used in the tests. Laminar plasma jets can be generated within a rather wide range of working-gas flow rates, and an unsteady transitional flow state exists between the laminar and turbulent flow regimes. The high-temperature region length of the laminar plasma jet can be over an order longer than that of the turbulent plasma jet and increases with increasing argon flow rate or arc current, while the jet length of the turbulent plasma is less influenced by the generating parameters. The flow field of the plasma jet has very high radial gradients of plasma parameters, and a Reynolds number alone calculated in the ordinary manner may not adequately serve as a criterion for transition. The laminar plasma jet can have a higher velocity than that of an unsteady or turbulent jet. The long laminar plasma jet has good stiffness to withstand the impact of laterally injected cold gas and particulate matter. It could be used as a rather ideal object for fundamental studies and be applied to novel materials processing due to its attractive stable and adjustable properties.
Resumo:
In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.
Resumo:
The element stiffness matrix of the equivalent beam or pipe element of the deformed leg of the platform is derived by the finite element method. The stresses and displacements of some damaged components are calculated, and the numeri-cal solutions agree well with those obtained by the fine mesh finite element method. Finally, as an application of this method, the stresses of some platform structures are calculated and analyzed.
Resumo:
Using dimensional analysis and finite element calculation, we studied spherical indentation in elastic-plastic solids with work hardening. We report two previously unknown relationships between hardness, reduced modulus, indentation depth, indenter radius, and work of indentation. These relationships, together with the relationship between initial unloading stiffness and reduced modulus, provide an energy-based method for determining contact area, reduced modulus, and hardness of materials from instrumented spherical indentation measurements. This method also provides a means for calibrating the effective radius of imperfectly shaped spherical indenters. Finally, the method is applied to the analysis of instrumented spherical indentation experiments on copper, aluminum, tungsten, and fused silica.
Resumo:
In the present research, microstructures of the surface-nanocrystalline Al alloy material are observed and measured based on the transmission electron microscopy (TEM) technique, and the corresponding mechanical behaviors are investigated experimentally and theoretically. In the experimental research, the nanoindentation test method is used, and the load and microhardness curves are measured, which strongly depend on the grain size and grain size nonuniformity. Two kinds of the nanoindentation test methods are adopted: the randomly selected loading point method and the continuous stiffness method. In the theoretical modeling, based on the microstructure characteristics of the surface-nanocrystalline Al alloy material, a dislocation pile-up model considering the grain size effect and based on the Mott theory is presented and used. The hardness-indent depth curves are predicted and modeled.
Resumo:
Physical forces generated by cells drive morphologic changes during development and can feedback to regulate cellular phenotypes. Because these phenomena typically occur within a 3-dimensional (3D) matrix in vivo, we used microelectromechanical systems (MEMS) technology to generate arrays of microtissues consisting of cells encapsulated within 3D micropatterned matrices. Microcantilevers were used to simultaneously constrain the remodeling of a collagen gel and to report forces generated during this process. By concurrently measuring forces and observing matrix remodeling at cellular length scales, we report an initial correlation and later decoupling between cellular contractile forces and changes in tissue morphology. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that cellular forces increased with boundary or matrix rigidity whereas levels of cytoskeletal and extracellular matrix (ECM) proteins correlated with levels of mechanical stress. By mapping these relationships between cellular and matrix mechanics, cellular forces, and protein expression onto a bio-chemo-mechanical model of microtissue contractility, we demonstrate how intratissue gradients of mechanical stress can emerge from collective cellular contractility and finally, how such gradients can be used to engineer protein composition and organization within a 3D tissue. Together, these findings highlight a complex and dynamic relationship between cellular forces, ECM remodeling, and cellular phenotype and describe a system to study and apply this relationship within engineered 3D microtissues.
Resumo:
Three adhesion contact models, JKR (Johnson-Kendall-Roberts), DMT (Derjaguin-Muller-Toporov) and MD (Maugis-Dugdale) are compared with the Hertz model in dealing with the nano-contact problems. It has been shown that the dimensionless load parameter, $\bar{P}=P/(\pi\Delta\gamma R)$, and the transition parameter, $\Lambda$, have significant influences on the contact stiffness (contact area) at micro/nano-scale and should not be ignored in shallow nanoindentation.
Resumo:
Squeeze-film effects of perforated plates for small amplitude vibration are analyzed through modified Reynolds equation (MRE). The analytical analysis reckons in most important influential factors: compressibility of the air, border effects, and the resistance caused by vertical air flow passing through perforated holes. It is found that consideration of air compressibility is necessary for high operating frequency and small ratio of the plate width to the attenuation length. The analytical results presented in this paper agree with ANSYS simulation results better than that under the air incompressibility assumption. The analytical analysis can be used to estimate the squeeze-film effects causing damping and stiffness added to the system. Since the value of Reynolds number involved in this paper is low (< 1), inertial effects are neglected.
Resumo:
The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.
Resumo:
We consider a straight cylindrical duct with a steady subsonic axial flow and a reacting boundary (e.g. an acoustic lining). The wave modes are separated into ordinary acoustic duct modes, and surface modes confined to a small neighbourhood of the boundary. Many researchers have used a mass-spring-damper boundary model, for which one surface mode has previously been identified as a convective instability; however, we show the stability analysis used in such cases to be questionable. We investigate instead the stability of the surface modes using the Briggs-Bers criterion for a Flügge thin-shell boundary model. For modest frequencies and wavenumbers the thin-shell has an impedance which is effectively that of a mass-spring-damper, although for the large wavenumbers needed for the stability analysis the thin-shell and mass-spring-damper impedances diverge, owing to the thin shell's bending stiffness. The thin shell model may therefore be viewed as a regularization of the mass-spring-damper model which accounts for nonlocally-reacting effects. We find all modes to be stable for realistic thin-shell parameters, while absolute instabilities are demonstrated for extremely thin boundary thicknesses. The limit of vanishing bending stiffness is found to be a singular limit, yielding absolute instabilities of arbitrarily large temporal growth rate. We propose that the problems with previous stability analyses are due to the neglect of something akin to bending stiffness in the boundary model. Our conclusion is that the surface mode previously identified as a convective instability may well be stable in reality. Finally, inspired by Rienstra's recent analysis, we investigate the scattering of an acoustic mode as it encounters a sudden change from a hard-wall to a thin-shell boundary, using a Wiener-Hopf technique. The thin-shell is considered to be clamped to the hard-wall. The acoustic mode is found to scatter into transmitted and reflected acoustic modes, and surface modes strongly linked to the solid waves in the boundary, although no longitudinal or transverse waves within the boundary are excited. Examples are provided that demonstrate total transmission, total reflection, and a combination of the two. This thin-shell scattering problem is preferable to the mass-spring-damper scattering problem presented by Rienstra, since the thin-shell problem is fully determined and does not need to appeal to a Kutta-like condition or the inclusion of an instability in order to avoid a surface-streamline cusp at the boundary change.
Resumo:
We use vibration localization as a sensitive means of detecting small perturbations in stiffness in a pair of weakly coupled micromechanical resonators. For the first time, the variation in the eigenstates is studied by electrostatically coupling nearly identical resonators to allow for stronger localization of vibrational energy due to perturbations in stiffness. Eigenstate variations that are orders of magnitude greater than corresponding shifts in resonant frequency for an induced stiffness perturbation are experimentally demonstrated. Such high, voltagetunable parametric sensitivities together with the added advantage of intrinsic common mode rejection pave the way to a new paradigm of mechanical sensing. ©2009 IEEE.