982 resultados para state equations
Resumo:
In current simulation packages for the management of extensive beef-cattle enterprises, the relationships for the key biological rates (namely conception and mortality) are quite rudimentary. To better estimate these relationships, cohort-level data covering 17 100 cow-years from six sites across northern Australia were collated and analysed. Further validation data, from 7200 cow-years, were then used to test these relationships. Analytical problems included incomplete and non-standardised data, considerable levels of correlation among the 'independent' variables, and the close similarity of alternate possible models. In addition to formal statistical analyses of these data, the theoretical equations for predicting mortality and conception rates in the current simulation models were reviewed, and then reparameterised and recalibrated where appropriate. The final models explained up to 80% of the variation in the data. These are now proposed as more accurate and useful models to be used in the prediction of biological rates in simulation studies for northern Australia. © The State of Queensland (through the Department of Agriculture, Fisheries and Forestry) 2012. © CSIRO.
Resumo:
The third-kind linear integral equation Image where g(t) vanishes at a finite number of points in (a, b), is considered. In general, the Fredholm Alternative theory [[5.]] does not hold good for this type of integral equation. However, imposing certain conditions on g(t) and K(t, t′), the above integral equation was shown [[1.], 49–57] to obey a Fredholm-type theory, except for a certain class of kernels for which the question was left open. In this note a theory is presented for the equation under consideration with some additional assumptions on such kernels.
Resumo:
Photochemical transformations of organic solids provide an exciting area of research with new synthetic possibilities. These reactions are generally governed by topochemical factors rather than the normal rules of chemical reactivity. Defects play a crucial role in some of the reactions. Some of the transformations such as the photodimerization of 4, 4'-dimethoxystilbene occur in a single crystal fashion.
Resumo:
Mit einer direkten Methode, bei der der Erdelyi-Kober- und der modifizierte Hankel-Operator Anwendung finden, werden gewisse Systeme aus zwei bzw. drei Paaren dualer Integralgleichungen mit Bessel-Kernen in geschlossener Form gelöst. Für bestimmte Funktionenklassen und Ordnungen der Bessel-Funktionen ist die Vorgehensweise angebrachter und geeigneter als die bereits existierenden Methoden.
Resumo:
Schoeffler has derived continuously equivalent networks in the nodal-admittance domain. The letter derives a corresponding result in state space that combines the usefulness of Schoeffler's result and the power of the state-variable approach.
Resumo:
The possibility or the impossibility of separating the particle and the electrode interactions is discussed in a wider context of the effects due to any two interaction potentials on the equation of state. The involved nature of the pressure dependence on two individually definable forces is illustrated through the Percus Yevick results for the adhesive hard spheres. An alternative form of the adsorption isotherm is given to bring home the intimate relationship between the actual equation of state and the free energy of adsorption. Thermodynamic consequences of congruence with respect to E (or q) as reflected through the linear plots of q (or E) vs. θ are well known. Mathematical consequences of simultaneous congruence have been pointed out recently. In this paper, the physical nature of congruence hypothesis is revealed. In passing "the pseudo-congruence" is also discussed. It is emphasised that the problem is no less ambiguous with regard to modelling the particle/particle interaction. The ad hoc nature of our dependence of the available equations of state is emphasised through a discussion on the HFL theory. Finally, a heuristic method for modelling ΔG mathematically-incorporating its behaviour at saturation coverages-is advanced. The more interesting aspects of this approach, which generalises almost all isotherms hitherto known, are sketched.
Resumo:
To quantify the impact that planting indigenous trees and shrubs in mixed communities (environmental plantings) have on net sequestration of carbon and other environmental or commercial benefits, precise and non-biased estimates of biomass are required. Because these plantings consist of several species, estimation of their biomass through allometric relationships is a challenging task. We explored methods to accurately estimate biomass through harvesting 3139 trees and shrubs from 22 plantings, and collating similar datasets from earlier studies, in non-arid (>300mm rainfallyear-1) regions of southern and eastern Australia. Site-and-species specific allometric equations were developed, as were three types of generalised, multi-site, allometric equations based on categories of species and growth-habits: (i) species-specific, (ii) genus and growth-habit, and (iii) universal growth-habit irrespective of genus. Biomass was measured at plot level at eight contrasting sites to test the accuracy of prediction of tonnes dry matter of above-ground biomass per hectare using different classes of allometric equations. A finer-scale analysis tested performance of these at an individual-tree level across a wider range of sites. Although the percentage error in prediction could be high at a given site (up to 45%), it was relatively low (<11%) when generalised allometry-predictions of biomass was used to make regional- or estate-level estimates across a range of sites. Precision, and thus accuracy, increased slightly with the level of specificity of allometry. Inclusion of site-specific factors in generic equations increased efficiency of prediction of above-ground biomass by as much as 8%. Site-and-species-specific equations are the most accurate for site-based predictions. Generic allometric equations developed here, particularly the generic species-specific equations, can be confidently applied to provide regional- or estate-level estimates of above-ground biomass and carbon. © 2013 Elsevier B.V.
Resumo:
There is intense activity in the area of theoretical chemistry of gold. It is now possible to predict new molecular species, and more recently, solids by combining relativistic methodology with isoelectronic thinking. In this thesis we predict a series of solid sheet-type crystals for Group-11 cyanides, MCN (M=Cu, Ag, Au), and Group-2 and 12 carbides MC2 (M=Be-Ba, Zn-Hg). The idea of sheets is then extended to nanostrips which can be bent to nanorings. The bending energies and deformation frequencies can be systematized by treating these molecules as an elastic bodies. In these species Au atoms act as an 'intermolecular glue'. Further suggested molecular species are the new uncongested aurocarbons, and the neutral Au_nHg_m clusters. Many of the suggested species are expected to be stabilized by aurophilic interactions. We also estimate the MP2 basis-set limit of the aurophilicity for the model compounds [ClAuPH_3]_2 and [P(AuPH_3)_4]^+. Beside investigating the size of the basis-set applied, our research confirms that the 19-VE TZVP+2f level, used a decade ago, already produced 74 % of the present aurophilic attraction energy for the [ClAuPH_3]_2 dimer. Likewise we verify the preferred C4v structure for the [P(AuPH_3)_4]^+ cation at the MP2 level. We also perform the first calculation on model aurophilic systems using the SCS-MP2 method and compare the results to high-accuracy CCSD(T) ones. The recently obtained high-resolution microwave spectra on MCN molecules (M=Cu, Ag, Au) provide an excellent testing ground for quantum chemistry. MP2 or CCSD(T) calculations, correlating all 19 valence electrons of Au and including BSSE and SO corrections, are able to give bond lengths to 0.6 pm, or better. Our calculated vibrational frequencies are expected to be better than the currently available experimental estimates. Qualitative evidence for multiple Au-C bonding in triatomic AuCN is also found.
Resumo:
Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro_(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro_(L)Pro_(L)Phe-OMe (2), and Piv-(D)Pro_(L)Pro_(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The C-13 spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C-beta and C-gamma carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all transform across the di-Proline segment. The results are In agreement with the X-ray analysis. Solid state N-15 resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. H-1 chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between H-1-C-13. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.
Resumo:
In der vorliegenden Arbeit wird die Methode der parametrischen Differentiation angewendet, um ein System nichtlinearer Gleichungen zu lösen, das zwei- und dreidimensionale freie, konvektive Grenzschichströmungen bzw. eine zweidimensionale magnetohydrodynamische Grenzschichtströmung beherrscht. Der Hauptvorteil dieser Methode besteht darin, daß die nichlinearen Gleichungen auf lineare reduziert werden und die Nichtlinearität auf ein System von Gleichungen erster Ordnung beschränkt wird, das, verglichen mit den ursprünglichen Nichtlinearen Gleichungen, viel leichter gelöst werden kann. Ein anderer Vorzug der Methode ist, daß sie es ermöglicht, die Lösung von einer bekannten, zu einem bestimmten Parameterwert gehörigen Lösung aus durch schrittweises Vorgehen die Lösung für den gesamten Parameterbereich zu erhalten. Die mit dieser Methode gewonnenen Ergebnisse stimmen gut mit den entsprechenden, mit anderen numerischen Verfahren erzielten überein.
Resumo:
NMR spectroscopy enables the study of biomolecules from peptides and carbohydrates to proteins at atomic resolution. The technique uniquely allows for structure determination of molecules in solution-state. It also gives insights into dynamics and intermolecular interactions important for determining biological function. Detailed molecular information is entangled in the nuclear spin states. The information can be extracted by pulse sequences designed to measure the desired molecular parameters. Advancement of pulse sequence methodology therefore plays a key role in the development of biomolecular NMR spectroscopy. A range of novel pulse sequences for solution-state NMR spectroscopy are presented in this thesis. The pulse sequences are described in relation to the molecular information they provide. The pulse sequence experiments represent several advances in NMR spectroscopy with particular emphasis on applications for proteins. Some of the novel methods are focusing on methyl-containing amino acids which are pivotal for structure determination. Methyl-specific assignment schemes are introduced for increasing the size range of 13C,15N labeled proteins amenable to structure determination without resolving to more elaborate labeling schemes. Furthermore, cost-effective means are presented for monitoring amide and methyl correlations simultaneously. Residual dipolar couplings can be applied for structure refinement as well as for studying dynamics. Accurate methods for measuring residual dipolar couplings in small proteins are devised along with special techniques applicable when proteins require high pH or high temperature solvent conditions. Finally, a new technique is demonstrated to diminish strong-coupling induced artifacts in HMBC, a routine experiment for establishing long-range correlations in unlabeled molecules. The presented experiments facilitate structural studies of biomolecules by NMR spectroscopy.