946 resultados para src Homology Domains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of much effort, no one has succeeded in isolating and characterizing the enzyme(s) responsible for synthesis of cellulose, the major cell wall polymer of plants. We have characterized two cotton (Gossypium hirsutum) cDNA clones and identified one rice (Oryza sativa) cDNA that are homologs of the bacterial celA genes that encode the catalytic subunit of cellulose synthase. Three regions in the deduced amino acid sequences of the plant celA gene products are conserved with respect to the proteins encoded by bacterial celA genes. Within these conserved regions, there are four highly conserved subdomains previously suggested to be critical for catalysis and/or binding of the substrate UDP-glucose (UDP-Glc). An overexpressed DNA segment of the cotton celA1 gene encodes a polypeptide fragment that spans these domains and binds UDP-Glc, while a similar fragment having one of these domains deleted does not. The plant celA genes show little homology at the N- and C-terminal regions and also contain two internal insertions of sequence, one conserved and one hypervariable, that are not found in the bacterial gene sequences. Cotton celA1 and celA2 genes are expressed at high levels during active secondary wall cellulose synthesis in developing cotton fibers. Genomic Southern blot analyses in cotton demonstrate that celA forms a small gene family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription elongation by RNA polymerase II is regulated by the general elongation factor TFIIS. This factor stimulates RNA polymerase II to transcribe through regions of DNA that promote the formation of stalled ternary complexes. Limited proteolytic digestion showed that yeast TFIIS is composed of three structural domains, termed I, II, and III. The two C-terminal domains (II and III) are required for transcription activity. The structure of domain III has been solved previously by using NMR spectroscopy. Here, we report the NMR-derived structure of domain II: a three-helix bundle built around a hydrophobic core composed largely of three tyrosines protruding from one face of the C-terminal helix. The arrangement of known inactivating mutations of TFIIS suggests that two surfaces of domain II are critical for transcription activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p300 and its family member, CREB-binding protein (CBP), function as key transcriptional coactivators by virtue of their interaction with the activated forms of certain transcription factors. In a search for additional cellular targets of p300/CBP, a protein-protein cloning strategy, surprisingly identified SRC-1, a coactivator involved in nuclear hormone receptor transcriptional activity, as a p300/CBP interactive protein. p300 and SRC-1 interact, specifically, in vitro and they also form complexes in vivo. Moreover, we show that SRC-1 encodes a new member of the basic helix-loop-helix-PAS domain family and that it physically interacts with the retinoic acid receptor in response to hormone binding. Together, these results implicate p300 as a component of the retinoic acid signaling pathway, operating, in part, through specific interaction with a nuclear hormone receptor coactivator, SRC-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p53 is a multifunctional tumor suppressor protein involved in the negative control of cell growth. Mutations in p53 cause alterations in cellular phenotype, including immortalization, neoplastic transformation, and resistance to DNA-damaging drugs. To help dissect distinct functions of p53, a set of genetic suppressor elements (GSEs) capable of inducing different p53-related phenotypes in rodent embryo fibroblasts was isolated from a retroviral library of random rat p53 cDNA fragments. All the GSEs were 100-300 nucleotides long and were in the sense orientation. They fell into four classes, corresponding to the transactivator (class I), DNA-binding (class II), and C-terminal (class III) domains of the protein and the 3'-untranslated region of the mRNA (class IV). GSEs in all four classes promoted immortalization of primary cells, but only members of classes I and III cooperated with activated ras to transform cells, and only members of class III conferred resistance to etoposide and strongly inhibited transcriptional transactivation by p53. These observations suggest that processes related to control of senescence, response to DNA damage, and transformation involve different functions of the p53 protein and furthermore indicate a regulatory role for the 3'-untranslated region of p53 mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinesin and ncd motor proteins are homologous in sequence yet move in opposite directions along microtubules. We have previously shown that monomeric kinesin and ncd bind in the same orientation on equivalent sites relative to the ends of tubulin sheets of known polarity. We now report cryoelectron microscope images of 16-protofilament microtubules decorated with both single- and double-headed kinesin and double-headed ncd. Three-dimensional density maps and difference maps show that, in adenosine 5'-[beta,gamma-imido]triphosphate, both dimeric motors bind tightly to microtubules via one head, leaving the other free, though apparently in a fixed position. The attached heads of dimers bind to tubulin in the same way as single kinesin heads. The second heads are connected to the tops of the first but, whereas the second kinesin head is closely associated with the first, pairs of ncd heads are splayed apart. There is also a distinct difference in orientation: the second kinesin head is tilted toward the microtubule plus end, while the second head of ncd points toward the minus end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein tyrosine phosphorylation and dephosphorylation are key regulatory events in T-cell receptor (TCR) signaling. We investigated the role of the tyrosine phosphatase SHPTP1 in TCR signaling by analysis of TCR signal transduction in motheaten (me/me) mice, which lack SHPTP1 expression. As revealed by flow cytometric analysis, thymocyte development was normal in me/me mice. However, me/me thymocytes hyperproliferated (3-to 5-fold) in response to TCR stimulation, whereas their response to interleukin 2 stimulation was unchanged compared with normal thymocytes. TCR-induced hyperproliferation of me/me thymocytes was reproduced in purified single-positive thymocytes. Moreover, me/me thymocytes produced increased amounts of interleukin 2 production upon TCR stimulation. Biochemical analysis revealed that, in response to TCR or TCR/CD4 stimulation, thymocytes lacking SHPTP1 showed increased tyrosyl phosphorylation of several cellular substrates, which correlated with increased activation of the src-family kinases Lck and Fyn. Taken together, our data suggest that SHPTP1 is an important negative regulator of TCR signaling, acting at least in part to inactivate Lck and Fyn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mosquito (Aedes aegypti) vitellogenin receptor (AaVgR) is a large membrane-bound protein (214 kDa when linearized) that mediates internalization of vitellogenin, the major yolk-protein precursor, by oocytes during egg development. We have cloned and sequenced two cDNA fragments encompassing the entire coding region of AaVgR mRNA, to our knowledge the first insect VgR sequence to be reported. The 7.3-kb AaVgR mRNA is present only in female germ-line cells and is abundant in previtellogenic oocytes, suggesting that the AaVgR gene is expressed early in oocyte differentiation. The deduced amino acid sequence predicts a 202.7-kDa protein before posttranslational processing. The AaVgR is a member of the low density lipoprotein receptor superfamily, sharing significant homology with the chicken (Gallus gallus) VgR and particularly the Drosophila melanogaster yolk protein receptor, in spite of a very different ligand for the latter. Distance-based phylogenetic analyses suggest that the insect VgR/yolk protein receptor lineage and the vertebrate VgR/low density lipoprotein receptor lineage diverged before the bifurcation of nematode and deuterostome lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoblastoma (RB-1) is a tumor suppressor gene that encodes a 105-kDa nuclear phosphoprotein. To date, RB genes have been isolated only from metazoans. We have isolated a cDNA from maize endosperm whose predicted protein product (ZmRb) shows homology to the "pocket" A and B domains of the Rb protein family. We found ZmRb behaves as a pocket protein based on its ability to specifically interact with oncoproteins encoded by DNA tumor viruses (E7, T-Ag, E1A). ZmRb can interact in vitro and in vivo with the replication-associated protein, RepA, encoded by the wheat dwarf virus. The maize Rb-related protein undergoes changes in level and phosphorylation state concomitant with endoreduplication, and it is phosphorylated in vitro by an S-phase kinase from endoreduplicating endosperm cells. Together, our results suggest that ZmRb is a representative of the pocket protein family and may play a role in cell cycle progression. Moreover, certain plant monopartite geminiviruses may operate similarly to mammalian DNA viruses, by targeting and inactivating the retinoblastoma protein, which otherwise induces G1 arrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca2+ and its ubiquitous intracellular receptor calmodulin (CaM) are required in the nervous system, among a host of cellular responses, for the modulation of several important enzymes and ion channels involved in synaptic efficacy and neuronal plasticity. Here, we report that CaM can be replaced by the neuronal calcium sensor NCS-1 both in vitro and in vivo. NCS-1 is a calcium binding protein with two Ca(2+)-binding domains that shares only 21% of homology with CaM. We observe that NCS-1 directly activates two Ca2+/CaM-dependent enzymes (3':5'-cyclic nucleotide phosphodiesterase and protein phosphatase calcineurin). Co-activation of nitric oxide synthase by NCS-1 and CaM results in a higher activity than with CaM alone. Moreover, NCS-1 is coexpressed with calcineurin and nitric oxide synthase in several neuron populations. Finally, injections of NCS-1 into calmodulin-defective cam1 Paramecium partially restore wildtype behavioral responses. With this highly purified preparation of NCS-1, we have obtained crystals suitable for crystallographic structure studies. NCS-1, despite its very different structure, distribution, and Ca(2+)-binding affinity as compared with CaM, can substitute for or potentiate CaM functions. Therefore, NCS-1 represents a novel protein capable of mediating multiple Ca(2+)-signaling pathways in the nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a large family of transducer proteins in the Archaeon Halobacterium salinarium was identified. On the basis of the comparison of the predicted structural domains of these transducers, three distinct subfamilies of transducers were proposed. Here we report isolation, complete gene sequences, and analysis of the encoded primary structures of transducer gene htrII, a member of family B, and its blue light receptor gene (sopII) of sensory rhodopsin II (SRII). The start codon ATG of the 714-bp sopII gene is one nucleotide beyond the termination codon TGA of the 2298-bp htrII gene. The deduced protein sequence of HtrII predicts a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm. HtrII has a common feature with HtrI, the sensory rhodopsin I transducer; like HtrI, HtrII possesses a hydrophilic loop structure just after the second transmembrane segment. The C-terminal 299 residues (765 amino acid residues total) of HtrII show strong homology to the signaling and methylation domain of eubacterial transducer Tsr. The hydropathy plot of the primary structure of SRII indicates seven membrane-spanning alpha-helical segments, a characteristic feature of retinylidene proteins ("rhodopsins") from a widespread family of photoactive pigments. SRII shows high identity with SRI (42%), bacteriorhodopsin (BR) (32%), and halorhodopsin (24%). The crucial positions for retinal binding sites in these proteins are nearly identical, with the exception of Met-118 (numbering according to the mature BR sequence), which is replaced by Val in SRII. In BR, residues Asp-85 and Asp-96 are crucial in proton pumping. In SRII, the position corresponding to Asp-85 in BR is conserved, but the corresponding position of Asp-96 is replaced by an aromatic Tyr. Coexpression of the htrII and sopII genes restores SRII phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI and insertion in htrII/sopII regions. This paper describes the first example that both HtrI and HtrII exist in the same halobacterial cell, confirming that different sensory rhodopsins SRI and SRII in the same organism have their own distinct transducers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major intermediaries in signal transduction pathways are pp60v-sre family tyrosine kinases and heterotrimeric guanine nucleotide-binding proteins. In Rat-1 fibroblasts transformed by the v-src oncogene, endothelin-1 (ET-1)-induced inositol 1,4,5-trisphosphate accumulation is increased 6-fold, without any increases in the numbers of ET-1 receptors or in the response to another agonist, thrombin. This ET-1 hyperresponse can be inhibited by an antibody directed against the carboxyl terminus of the Gq/G11 alpha subunit, suggesting that the Gq/G11 protein couples ET-1 receptors to phospholipase C (PLC). While v-src transformation did not increase the expression of the Gq/G11 alpha subunit, immunoblotting with anti-phosphotyrosine antibodies and phosphoamino acid analysis demonstrated that the Gq/G11 alpha subunit becomes phosphorylated on tyrosine residues in v-src-transformed cells. Moreover, when the Gq/G11 protein was extracted from control and transformed cell lines and reconstituted with exogenous PLC, AIF*4-stimulated Gq/G11 activity was markedly increased in extracts from v-src-transformed cells. Our results demonstrate that the process of v-src transformation can increase the tyrosine phosphorylation state of the Gq/G11 alpha-subunit in intact cells and that the process causes an increase in the Gq/G11 alpha-subunit's ability to stimulate PLC following activation with AIF-4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence suggests that an amplifiable protease cascade consisting of multiple aspartate specific cysteine proteases (ASCPs) is responsible for the apoptotic changes observed in mammalian cells undergoing programmed cell death. Here we describe the cloning of two novel ASCPs from human Jurkat T-lymphocytes. Like other ASCPs, the new proteases, named Mch4 and Mch5, are derived from single chain proenzymes. However, their putative active sites contain a QACQG pentapeptide instead of the QACRG present in ail known ASCPs. Also, their N termini contain FADD-like death effector domains, suggesting possible interaction with FADD. Expression of Mch4 in Escherichia coli produced an active protease that, like other ASCPs, was potently inhibited (Kj = 14 nM) by the tetrapeptide aldehyde DEVD-CHO. Interestingly, both Mch4 and the serine protease granzyme B cleave recombinant proCPP32 and proMch3 at a conserved IXXD-S sequence to produce the large and small subunits of the active proteases. Granzyme B also cleaves proMch4 at a homologous IXXD-A processing sequence to produce mature Mch4. These observations suggest that CPP32 and Mch3 are targets of mature Mch4 protease in apoptotic cells. The presence of the FADD-like domains in Mch4 and Mch5 suggests a role for these proteases in the Fas-apoptotic pathway. In addition, these proteases could participate in the granzyme B apoptotic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterium Myxococcus xanthus responds to blue light by producing carotenoids. It also responds to starvation conditions by developing fruiting bodies, where the cells differentiate into myxospores. Each response entails the transcriptional activation of a separate set of genes. However, a single gene, carD, is required for the activation of both light- and starvation-inducible genes. Gene carD has now been sequenced. Its predicted amino acid sequence includes four repeats of a DNA-binding domain present in mammalian high mobility group I(Y) proteins and other nuclear proteins from animals and plants. Other peptide stretches on CarD also resemble functional domains typical of eukaryotic transcription factors, including a very acidic region and a leucine zipper. High mobility group yI(Y) proteins are known to bind the minor groove of A+T-rich DNA. CarD binds in vitro an A+T-rich element that is required for the proper operation of a carD-dependent promoter in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NM23-H2, a presumed regulator of tumor metastasis in humans, is a hexameric protein with both enzymatic (NDP kinase) and regulatory (transcriptional activation) activity. While the structure and catalytic mechanisms have been well characterized, the mode of DNA binding is not known. We examined this latter function in a site-directed mutational study and identified residues and domains essential for the recognition of a c-myc regulatory sequence. Three amino acids, Arg-34, Asn-69, and Lys-135, were found among 30 possibilities to be critical for DNA binding. Two of these, Asn-69 and Lys-135, are not conserved between NM23 variants differing in DNA-binding potential, suggesting that DNA recognition resides partly in nonconserved amino acids. All three DNA-binding defective mutant proteins are active enzymatically and appear to be stable hexamers, suggesting that they perform at the level of DNA recognition and that separate functional domains exist for enzyme catalysis and DNA binding. In the context of the known crystal structure of NM23-H2, the DNA-binding residues are located within distinct structural motifs in the monomer, which are exposed to the surface near the 2-fold axis of adjacent subunits in the hexamer. These findings are explained by a model in which NM23-H2 binds DNA with a combinatorial surface consisting of the "outer" face of the dimer. Chemical crosslinking data support a dimeric DNA-binding mode by NM23-H2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify determinants that form nonapeptide hormone binding domains of the white sucker Catostomus commersoni [Arg8]vasotocin receptor, chimeric constructs encoding parts of the vasotocin receptor and parts of the isotocin receptor have been analyzed by [(3,5-3H)Tyr2, Arg8]vasotocin binding to membranes of human embryonic kidney cells previously transfected with the different cDNA constructs and by functional expression studies in Xenopus laevis oocytes injected with mutant cRNAs. The results indicate that the N terminus and a region spanning the second extracellular loop and its flanking transmembrane segments, which contains a number of amino acid residues that are conserved throughout the nonapeptide receptor family, contribute to the affinity of the receptor for its ligand. Nonapeptide selectivity, however, is mainly defined by transmembrane region VI and the third extracellular loop. These results are complemented by a molecular model of the vasotocin receptor obtained by aligning its sequence with those of other G-protein coupled receptors as well as that of bacteriorhodopsin. The model indicates that amino acid residues of transmembrane regions II-VII that are located close to the extracellular surface also contribute to the binding of vasotocin.