861 resultados para speech delay
Resumo:
Facebook is a medium of social interaction producing its own style. I study how users from Malaga create this style through phonic features of the local variety and how they reflect on the use of these features. I then analyse the use of non-standard features by users from Malaga and compare them to an oral corpus. Results demonstrate that social factors work differently in real and virtual speech. Facebook communication is seen as a style serving to create social meaning and to express linguistic identity.
Resumo:
Recent downward revisions in the climate response to rising CO2 levels, and opportunities for reducing non-CO2 climate warming, have both been cited as evidence that the case for reducing CO2 emissions is less urgent than previously thought. Evaluating the impact of delay is complicated by the fact that CO2 emissions accumulate over time, so what happens after they peak is as relevant for long-term warming as the size and timing of the peak itself. Previous discussions have focused on how the rate of reduction required to meet any given temperature target rises asymptotically the later the emissions peak. Here we focus on a complementary question: how fast is peak CO2-induced warming increasing while mitigation is delayed, assuming no increase in rates of reduction after the emissions peak? We show that this peak-committed warming is increasing at the same rate as cumulative CO2 emissions, about 2% per year, much faster than observed warming, independent of the climate response.
Resumo:
Internet has affected our lives and society in manifold ways, and partly, in fundamental ways. Therefore, it is no surprise that one of the affected areas is language and communication itself. Over the last few years, online social networks have become a widespread and continuously expanding medium of communication. Being a new medium of social interaction, online social networks produce their own communication style, which in many cases differs considerably from real speech and is also perceived differently. The focus of analysis of my PhD thesis is how social network users from the city of Malaga create this virtual style by means of phonic features typical of the Andalusian variety of Spanish and how the users’ language attitude has an influence on the use of these phonic features. The data collection was fourfold: 1) a main corpus was compiled from 240 informants’ utterances on Facebook and Tuenti; 2) a corpus constituted of broad transcriptions of recordings with 120 people from Malaga served as a comparison; 3) a survey in which 240 participants rated the use of said phonetic variants on the following axes: “good–bad”, “correct–incorrect” and “beautiful–ugly” was carried out; 4) a survey with 240 participants who estimated with which frequency the analysed features are used in Malaga was conducted. For the analysis, which is quantitative and qualitative, ten variables were chosen. Results show that the studied variants are employed differently in virtual and real speech depending on how people perceive these variants. In addition, the use of the features is constrained by social factors. In general, people from Malaga have a more positive attitude towards non-‐standard features if they are used in virtual speech than in real speech. Thus, virtual communication is seen as a style serving to create social meaning and to express linguistic identity. These stylistic practices reflect an amalgam of social presuppositions about usage conventions and individual strategies for handling a new medium. In sum, the virtual style is an initiative deliberately taken by the users, to create their, real and virtual, identities, and to define their language attitudes towards the features of their variety of speech.
Resumo:
Comprehending speech is one of the most important human behaviors, but we are only beginning to understand how the brain accomplishes this difficult task. One key to speech perception seems to be that the brain integrates the independent sources of information available in the auditory and visual modalities in a process known as multisensory integration. This allows speech perception to be accurate, even in environments in which one modality or the other is ambiguous in the context of noise. Previous electrophysiological and functional magnetic resonance imaging (fMRI) experiments have implicated the posterior superior temporal sulcus (STS) in auditory-visual integration of both speech and non-speech stimuli. While evidence from prior imaging studies have found increases in STS activity for audiovisual speech compared with unisensory auditory or visual speech, these studies do not provide a clear mechanism as to how the STS communicates with early sensory areas to integrate the two streams of information into a coherent audiovisual percept. Furthermore, it is currently unknown if the activity within the STS is directly correlated with strength of audiovisual perception. In order to better understand the cortical mechanisms that underlie audiovisual speech perception, we first studied the STS activity and connectivity during the perception of speech with auditory and visual components of varying intelligibility. By studying fMRI activity during these noisy audiovisual speech stimuli, we found that STS connectivity with auditory and visual cortical areas mirrored perception; when the information from one modality is unreliable and noisy, the STS interacts less with the cortex processing that modality and more with the cortex processing the reliable information. We next characterized the role of STS activity during a striking audiovisual speech illusion, the McGurk effect, to determine if activity within the STS predicts how strongly a person integrates auditory and visual speech information. Subjects with greater susceptibility to the McGurk effect exhibited stronger fMRI activation of the STS during perception of McGurk syllables, implying a direct correlation between strength of audiovisual integration of speech and activity within an the multisensory STS.
Resumo:
The aim of this study was to investigate the effects of inner and heard speech on cerebral hemodynamics and oxygenation in the anterior prefrontal cortex (PFC) using functional near-infrared spectroscopy and to test whether potential effects were caused by alterations in the arterial carbon dioxide pressure (PaCO2). Twenty-nine healthy adult volunteers performed six different tasks of inner and heard speech according to a randomized crossover design. During the tasks, we generally found a decrease in PaCO2 (only for inner speech), tissue oxygen saturation (StO2), oxyhemoglobin ([O2Hb]), total hemoglobin ([tHb]) concentration and an increase in deoxyhemoglobin concentration ([HHb]). Furthermore, we found significant relations between changes in [O2Hb], [HHb], [tHb], or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. We conclude that changes in breathing during the tasks led to lower PaCO2 (hypocapnia) for inner speech. During heard speech, no significant changes in PaCO2 occurred, but the decreases in StO2, [O2Hb], and [tHb] suggest that changes in PaCO2 were also involved here. Different verse types (hexameter and alliteration) led to different changes in [tHb], implying different brain activations. In conclusion, StO2, [O2Hb], [HHb], and [tHb] are affected by interplay of both PaCO2 reactivity and functional brain activity.
Resumo:
The aim of the present study was (i) to investigate the effect of inner speech on cerebral hemodynamics and oxygenation, and (ii) to analyze if these changes could be the result of alternations of the arterial carbon dioxide pressure (PaCO2). To this end, in seven adult volunteers, we measured changes of cerebral absolute [O2Hb], [HHb], [tHb] concentrations and tissue oxygen saturation (StO2) (over the left and right anterior prefrontal cortex (PFC)), as well as changes in end-tidal CO2 (PETCO2), a reliable and accurate estimate of PaCO2. Each subject performed three different tasks (inner recitation of hexameter (IRH) or prose (IRP) verses) and a control task (mental arithmetic (MA)) on different days according to a randomized crossover design. Statistical analysis was applied to the differences between pre-baseline, two tasks, and four post-baseline periods. The two brain hemispheres and three tasks were tested separately. During the tasks, we found (i) PETCO2 decreased significantly (p < 0.05) during the IRH ( ~ 3 mmHg) and MA ( ~ 0.5 mmHg) task. (ii) [O2Hb] and StO2 decreased significantly during IRH ( ~ 1.5 μM; ~ 2 %), IRP ( ~ 1 μM; ~ 1.5 %), and MA ( ~ 1 μM; ~ 1.5 %) tasks. During the post-baseline period, [O2Hb] and [tHb] of the left PFC decreased significantly after the IRP and MA task ( ~ 1 μM and ~ 2 μM, respectively). In conclusion, the study showed that inner speech affects PaCO2, probably due to changes in respiration. Although a decrease in PaCO2 is causing cerebral vasoconstriction and could potentially explain the decreases of [O2Hb] and StO2 during inner speech, the changes in PaCO2 were significantly different between the three tasks (no change in PaCO2 for MA) but led to very similar changes in [O2Hb] and StO2. Thus, the cerebral changes cannot solely be explained by PaCO2.
Resumo:
Introduction In several studies, we found that during guided rhythmic speech exercises, a decrease in cerebral hemodynamics and oxygenation occurred as the result of a decrease in the partial pressure of carbon dioxide in the arterial blood (PaCO2) during speaking. To further explore the effect of PaCO2 variations on cerebral hemodynamics and oxygenation, the aim of the present study was to investigate the impact of spoken, inner and heard speech tasks on these parameters. Material and Methods Speech tasks included recitation or inner recitation or listening to hexameter, alliteration, prose, or performing mental arithmetic. The following physiological parameters were measured: tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin, deoxyhemoglobin, total hemoglobin (over the left and right anterior prefrontal cortex, using an ISS OxiplexTS frequency domain near-infrared spectrometer) and end-tidal CO2 (PETCO2; using Nellcor N1000 and Datex NORMOCAP capnographs). Statistical analysis was applied to the differences between baseline, 2 tasks, and 3 post-baseline periods. Data of 3 studies with 24, 7 and 29 healthy subjects, respectively, were combined, and linear regression analyses were calculated. Results Linear regression analyses revealed significant relations between changes in oxyhemoglobin, deoxyhemoglobin, total hemoglobin or StO2 and the participants’ age, the baseline PETCO2 or certain speech tasks. While hexameter verses affected changes during the tasks, alliteration verses only affected changes during the recovery phase. Discussion and Conclusion The observed effects in hemodynamics and oxygenation indicate a combination of neurovascular coupling (increased neuronal activity leading to an increase in the cerebral metabolic rate of oxygen resulting in an increase in cerebral flood flow/volume) and CO2 reactivity (increased breathing during speech tasks causing a decrease in PaCO2 leading to vasoconstriction and decrease in cerebral blood flow). The neurovascular coupling characteristics are task-dependent. References Scholkmann F, Gerber U, Wolf M, Wolf U. End-tidal CO2: An important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 2013;66:71-79. Scholkmann F, Wolf M, Wolf U. The effect of inner speech on arterial CO2, cerebral hemodynamics and oxygenation – A functional NIRS study. Adv Exp Med Biol 2013;789:81-87.
Resumo:
Background: The aim of the present study was to contributing to researching physiological effects of arts speech therapy by (i) investigating effects of inner and heard speech on cerebral hemodynamics and oxygenation, and (ii) analyzing if these changes were affected by alterations of the arterial carbon dioxide pressure (PaCO2). Methods: In 29 healthy adult volunteers we measured changes in cerebral absolute oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]), total hemoglobin ([tHb]) concentrations and tissue oxygen saturation (StO2) (over the left and right anterior prefrontal cortex (PFC)) using functional near-infrared spectroscopy (fNIRS) as well as changes in end-tidal CO2 (PETCO2) using capnography. Each subject performed six different tasks: three types of task modalities, i.e. inner speech, heard speech from a person and heard speech from a record, and, two recitation texts, i.e. hexameter and alliteration on different days according to a randomized crossover design. Statistical analysis was applied to the differences between the baseline, two task and four recovery periods. The two brain hemispheres, i.e. left and right PFC, and six tasks were tested separately. Results: During the tasks we found in general a decrease in PETCO2 (significantly only for inner speech), StO2, [O2Hb], [tHb] as well as in an increase in [HHb]. There was a significant difference between hexameter and alliteration. Particularly, the changes in [tHb] at the left PFC during tasks and after them were statistically different. Furthermore we found significant relations between changes in [O2Hb], [HHb], [tHb] or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. Conclusions: Changes in breathing (hyperventilation) during the tasks led to lower PaCO2 (hypocapnia) for inner speech. During heard speech no significant changes in PaCO2 occurred, but the decreases in StO2, [O2Hb], [tHb] suggest that changes in PaCO2 were also relevant here. Different verse types (hexameter, alliteration) led to different changes in [tHb]. Consequently, StO2, [O2Hb], [HHb] and [tHb] are affected by interplay of both PaCO2 reactivity and task dependent functional brain activity.
The influence of inner and heard speech in arts speech therapy on brain oxygenation and hemodynamics
Resumo:
Purpose: Artistic speech therapy is applied in anthroposophically extended medicine to treat several diseases. The aim is to understand the physiology by investigating the effect of inner and heard speech on brain hemodynamics and oxygenation and analyzing whether these changes were affected by changes in arterial carbon dioxide pressure. Methods: In 29 healthy adult volunteers changes in cerebral absolute oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]), total hemoglobin ([tHb]) concentrations and tissue oxygen saturation (StO2) were measured by functional near-infrared spectroscopy (fNIRS). End-tidal CO2 (PETCO2) was assessed by capnography. Each subject performed six tasks: inner speech, heard speech from a person and heard speech from a record with each two different recitation texts: hexameter and alliteration according to a randomized crossover design. Results: Significant changes during tasks: A decrease in StO2, [O2Hb], [tHb] and PETCO2 (only for inner speech); an increase in [HHb]. There was a significant difference between hexameter and alliteration. Particularly, changes in [tHb] at the left prefrontal cortex during tasks and after them were statistically different. Furthermore we found significant relations between changes in [O2Hb], [HHb], [tHb] or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. Conclusion: During the inner speech, hyperventilation led to a lower PETCO2 (hypocapnia). During heard speech no significant changes in PETCO2 occurred. But decreases in StO2, [O2Hb], [tHb] suggest hypocapnia also here. Hexameter and alliteration led to different changes in [tHb]. Consequently, our parameters are affected by an interplay of both PETCO2 response and task dependent functional brain activity.
Resumo:
Intra-session network coding has been shown to offer significant gains in terms of achievable throughput and delay in settings where one source multicasts data to several clients. In this paper, we consider a more general scenario where multiple sources transmit data to sets of clients over a wireline overlay network. We propose a novel framework for efficient rate allocation in networks where intermediate network nodes have the opportunity to combine packets from different sources using randomized network coding. We formulate the problem as the minimization of the average decoding delay in the client population and solve it with a gradient-based stochastic algorithm. Our optimized inter-session network coding solution is evaluated in different network topologies and is compared with basic intra-session network coding solutions. Our results show the benefits of proper coding decisions and effective rate allocation for lowering the decoding delay when the network is used by concurrent multicast sessions.
Resumo:
BACKGROUND: Cortical gray matter thinning occurs during childhood due to pruning of inefficient synaptic connections and an increase in myelination. Preterms show alterations in brain structure, with prolonged maturation of the frontal lobes, smaller cortical volumes and reduced white matter volume. These findings give rise to the question if there is a differential influence of age on cortical thinning in preterms compared to controls. AIMS: To investigate the relationship between age and cortical thinning in school-aged preterms compared to controls. STUDY DESIGN AND OUTCOME MEASURES: The automated surface reconstruction software FreeSurfer was applied to obtain measurements of cortical thickness based on T1-weighted MRI images. SUBJECTS: Forty-one preterms (<32weeks gestational age and/or <1500g birth weight) and 30 controls were included in the study (7-12years). RESULTS: In preterms, age correlated negatively with cortical thickness in right frontal, parietal and inferior temporal regions. Furthermore, young preterms showed a thicker cortex compared to old preterms in bilateral frontal, parietal and temporal regions. In controls, age was not associated with cortical thickness. CONCLUSION: In preterms, cortical thinning still seems to occur between the age of 7 and 12years, mainly in frontal and parietal areas whereas in controls, a substantial part of cortical thinning appears to be completed before they reach the age of 7years. These data indicate slower cortical thinning in preterms than in controls.