976 resultados para solid-phase extraction
Resumo:
In this work, the volatile chromatographic profiles of roasted Arabica coffees, previously analyzed for their sensorial attributes, were explored by principal component analysis. The volatile extraction technique used was the solid phase microextraction. The correlation optimized warping algorithm was used to align the gas chromatographic profiles. Fifty four compounds were found to be related to the sensorial attributes investigated. The volatiles pyrrole, 1-methyl-pyrrole, cyclopentanone, dihydro-2-methyl-3-furanone, furfural, 2-ethyl-5-methyl-pyrazine, 2-etenyl-n-methyl-pyrazine, 5-methyl-2-propionyl-furan compounds were important for the differentiation of coffee beverage according to the flavour, cleanliness and overall quality. Two figures of merit, sensitivity and specificity (or selectivity), were used to interpret the sensory attributes studied.
Resumo:
In this work, the organic compounds of cigar samples from different brands were analyzed. The compound extraction was made using the matrix solid-phase dispersion (MSPD) technique, followed by gas chromatography and identification by mass spectrometry (GC-MS) and standards, when available. Thirty eight organic compounds were found in seven different brands. Finally, with the objective of characterizing and discriminating the cigar samples, multivariate statistical analyses were applied to data, e.g.; principal component analysis (PCA) and hierarchical cluster analysis (HCA). With such analyses, it was possible to discriminate three main groups of three quality levels.
Resumo:
A method based on headspace - solid phase microextraction coupled with gas chromatography - mass spectrometry was validated for the quantitative determination of 18 organochlorine pesticides in water. For the extraction conditioning some parameters as the best type of coating fiber, time and temperature of extraction, pH and ionic strength were evaluated. The method HS-SPME/GC-MS/MS showed linear coefficient above 0.9948. The repeatability of the measurements were lower than 7.6%. Relative recoveries were between 88 and 110%. Limits of detection from 0.5 x 10-3 to 1.0 mg L-1 were obtained. A total of 31 samples were analyzed and 16 presented from 1 to 5 pesticides.
Resumo:
This is an overview of LC-MS techniques applied for macrolide determination in food, including sample preparation and method validation, as well as the policies adopted by international agencies regarding their presence in food. Techniques for the analysis of macrolides in food normally include solid phase or liquid-liquid extraction followed by HPLC. UHPLC presents advantages in running time, detectability and solvent consumption. Triple-quadrupoles are the most common analyzers in instruments used for the determination of contaminants in food, but time-of-flight and ion-trap spectrometers have been successfully applied for analyses focusing on the investigation of structural formula or the presence of degradation products.
Resumo:
Two methods using headspace solid-phase microextraction and gas chromatography - mass spectrometry were developed for the determination of polycyclic aromatic hydrocarbons (PAH) and BTEX. Best results were obtained using DVB/CAR/PDMS fiber, with 10 min extraction at 25 °C and 0.15 min desorption at 260 °C (BTEX), and PDMS/DVB fiber, with 60 min extraction at 90 °C, 10% NaCl and 5 min desorption at 270 °C (PAH). LOD intervals were 3x10-2 - 5x10-2 µg L-1 (BTEX) and 1.6x10-3 - 1.4 µg L-1 (PAH). The methods were applied to forty-five groundwater samples from monitoring wells of gas stations and only benzene level exceeded the limit established by Brazilian regulations.
Resumo:
In this study, a method of solid-liquid extraction and purification at low temperature (SLE-PLT) to determine 16 polycyclic aromatic hydrocarbons (PAHs) in sewage sludge was optimized and validated. The analyses were performed by HPLC-UV. The extraction phase, homogenization procedure, influence of pH, ionic strength and clean-up of the extracts were optimized. Recoveries were higher than 63.4% for 11 PAHs. The correlation coefficients were greater than 0.99 and limits of detection and quantitation were less than 0.060 and 0.15 µg g-1, respectively. These values were lower than the maximum residue limits of PAHs established by European legislation. SLE-PLT proved a more practical, economical method with fewer steps compared to Soxhlet extraction (reference method) for PAHs in sewage sludge.
Resumo:
This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.
Resumo:
Ion mobility spectrometry (IMS) is a straightforward, low cost method for fast and sensitive determination of organic and inorganic analytes. Originally this portable technique was applied to the determination of gas phase compounds in security and military use. Nowadays, IMS has received increasing attention in environmental and biological analysis, and in food quality determination. This thesis consists of literature review of suitable sample preparation and introduction methods for liquid matrices applicable to IMS from its early development stages to date. Thermal desorption, solid phase microextraction (SPME) and membrane extraction were examined in experimental investigations of hazardous aquatic pollutants and potential pollutants. Also the effect of different natural waters on the extraction efficiency was studied, and the utilised IMS data processing methods are discussed. Parameters such as extraction and desorption temperatures, extraction time, SPME fibre depth, SPME fibre type and salt addition were examined for the studied sample preparation and introduction methods. The observed critical parameters were extracting material and temperature. The extraction methods showed time and cost effectiveness because sampling could be performed in single step procedures and from different natural water matrices within a few minutes. Based on these experimental and theoretical studies, the most suitable method to test in the automated monitoring system is membrane extraction. In future an IMS based early warning system for monitoring water pollutants could ensure the safe supply of drinking water. IMS can also be utilised for monitoring natural waters in cases of environmental leakage or chemical accidents. When combined with sophisticated sample introduction methods, IMS possesses the potential for both on-line and on-site identification of analytes in different water matrices.
Resumo:
In the present study we determined the efficacy of the measurement of fecal cortisol and androgen metabolite concentrations to monitor adrenal and testicular activity in the jaguar (Panthera onca). Three captive male jaguars were chemically restrained and electroejaculated once or twice within a period of two months. Fecal samples were collected daily for 5 days before and 5 days after the procedure and stored at -20ºC until extraction. Variations in the concentrations of cortisol and androgen metabolites before and after the procedure were determined by solid phase cortisol and testosterone radioimmunoassay and feces dry weight was determined by drying at 37ºC for 24 h under vacuum. On four occasions, fecal cortisol metabolite levels were elevated above baseline (307.8 ± 17.5 ng/g dry feces) in the first fecal sample collected after the procedure (100 to 350% above baseline). On one occasion, we did not detect any variation. Mean (± SEM) fecal androgen concentration did not change after chemical restraint and electroejaculation (before: 131.1 ± 26.7, after: 213.7 ± 43.6 ng/g dry feces). These data show that determination of fecal cortisol and androgen metabolites can be very useful for a noninvasive assessment of animal well-being and as a complement to behavioral, physiological, and pathological studies. It can also be useful for the study of the relationship between adrenal activity and reproductive performance in the jaguar.
Resumo:
Simultaneous Distillation-Extraction (SDE) and headspace-solid phase microextraction (HS-SPME) combined with GC-FID and GC-MS were used to analyze volatile compounds from plum (Prunus domestica L. cv. Horvin) and to estimate the most odor-active compounds by application of the Odor Activity Values (OAV). The analyses led to the identification of 148 components, including 58 esters, 23 terpenoids, 14 aldehydes, 11 alcohols, 10 ketones, 9 alkanes, 7 acids, 4 lactones, 3 phenols, and other 9 compounds of different structures. According to the results of SDE-GC-MS, SPME-GC-MS and OAV, ethyl 2-methylbutanoate, hexyl acetate, (E)-2-nonenal, ethyl butanoate, (E)-2-decenal, ethyl hexanoate, nonanal, decanal, (E)-β-ionone, Γ-dodecalactone, (Z)-3-hexenyl acetate, pentyl acetate, linalool, Γ-decalactone, butyl acetate, limonene, propyl acetate, Δ-decalactone, diethyl sulfide, (E)-2-hexenyl acetate, ethyl heptanoate, (Z)-3-hexenol, (Z)-3-hexenyl hexanoate, eugenol, (E)-2-hexenal, ethyl pentanoate, hexyl 2-methylbutanoate, isopentyl hexanoate, 1-hexanol, Γ-nonalactone, myrcene, octyl acetate, phenylacetaldehyde, 1-butanol, isobutyl acetate, (E)-2-heptenal, octadecanal, and nerol are characteristic odor active compounds in fresh plums since they showed concentrations far above their odor thresholds.
Resumo:
Abstract Brazilian wine production is characterized by Vitis labrusca grape varieties, especially the economically important Isabel cultivar, with over 80% of its production destined for table wine production. The objective of this study was to optimize and validate the conditions for extracting volatile compounds from wine with the solid-phase microextraction technique, using the response surface method. Based on the response surface analysis, it can be concluded that the central point values maximize the process of extracting volatile compounds from wine, i.e., an equilibrium time of 15 minutes, an extraction time of 35 minutes, and an extraction temperature of 30 °C. Esters were the most numerous compounds found under these extraction conditions, indicating that wines made from Isabel cultivar grapes are characterized by compounds that confer a fruity aroma; this finding corroborates the scientific literature.
Resumo:
We show that, at high densities, fully variational solutions of solidlike types can be obtained from a density functional formalism originally designed for liquid 4He . Motivated by this finding, we propose an extension of the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero temperature. The density profile of the interface between liquid and the (0001) surface of the 4He crystal is also investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased density functional (DF) methods to study highly nonhomogeneous systems, like 4He interacting with strongly attractive impurities and/or substrates, or the nucleation of the solid phase in the metastable liquid.
Resumo:
The flavour characteristics of fresh and processed pennywort juices treated by pasteurization, sterilization and high pressure processing (HPP) were investigated by using solid-phase micro-extraction combined with gas chromatography-mass spectrometry. Sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic smell due to the presence of volatile compounds including β-caryophyllene, humulene, E-β-farnesene, α-copaene, alloaromadendrene and β-elemene. All processing operations caused a reduction in the total volatile concentration, but HPP caused more volatile acyclic alcohols, aldehydes and oxygenated monoterpenoids to be retained than pasteurization and sterilization. Ketones were not present in fresh pennywort juice, but 2-butanone and 3-nonen-2-one were generated in all processed juices, and 2-nonanone and 2-hexanone were present in pasteurized and sterilized juices. Other chemical changes including isomerization were also reduced by HPP compared to pasteurization, and sterilization.
Resumo:
The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL), for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins constituting the vast majority of species in any proteome, as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis. Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification / detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL capture is at least twice that of control, untreated sample.
Resumo:
The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL, for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins Constituting the vast majority of species in any proteome. as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis, Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic Compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification I detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL Capture is at least twice that of control, untreated sample. (c) 2008 Elsevier B.V. All rights reserved.