969 resultados para single cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloning allows the asexual reproduction of selected individuals such that the offspring have an essentially identical nuclear genome. Cloning by nuclear transfer thus far has been reported only with freshly isolated cells and cells from primary cultures. We previously reported a method of cloning mice from adult somatic cells after nuclear transfer by microinjection. Here, we apply this method to clone mice from widely available, established embryonic stem (ES) cell lines at late passage. With the ES cell line R1, 29% of reconstructed oocytes developed in vitro to the morula/blastocyst stage, and 8% of these embryos developed to live-born pups when transferred to surrogate mothers. We thus cloned 26 mice from R1 cells. Nuclei from the ES cell line E14 also were shown to direct development to term. We present evidence that the nuclei of ES cells at G1- or G2/M-phases are efficiently able to support full development. Our findings demonstrate that late-passage ES cells can be used to produce viable cloned mice and provide a link between the technologies of ES cells and animal cloning. It thus may be possible to clone from a single cell a large number of individuals over an extended period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Threshold mechanisms of transcriptional activation are thought to be critical for translating continuous gradients of extracellular signals into discrete all-or-none cellular responses, such as mitogenesis and differentiation. Indeed, unequivocal evidence for a graded transcriptional response in which the concentration of inducer directly correlates with the level of gene expression in individual eukaryotic cells is lacking. By using a novel binary tetracycline regulatable retroviral vector system, we observed a graded rather than a threshold mechanism of transcriptional activation in two different model systems. When polyclonal populations of cells were analyzed at the single cell level, a dose-dependent, stepwise increase in expression of the reporter gene, green fluorescent protein (GFP), was observed by fluorescence-activated cell sorting. These data provide evidence that, in addition to the generally observed all-or-none switch, the basal transcription machinery also can respond proportionally to changes in concentration of extracellular inducers and trancriptional activators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human pluripotent stem cells would be invaluable for in vitro studies of aspects of human embryogenesis. With the goal of establishing pluripotent stem cell lines, gonadal ridges and mesenteries containing primordial germ cells (PGCs, 5–9 weeks postfertilization) were cultured on mouse STO fibroblast feeder layers in the presence of human recombinant leukemia inhibitory factor, human recombinant basic fibroblast growth factor, and forskolin. Initially, single PGCs in culture were visualized by alkaline phosphatase activity staining. Over a period of 7–21 days, PGCs gave rise to large multicellular colonies resembling those of mouse pluripotent stem cells termed embryonic stem and embryonic germ (EG) cells. Throughout the culture period most cells within the colonies continued to be alkaline phosphatase-positive and tested positive against a panel of five immunological markers (SSEA-1, SSEA-3, SSEA-4, TRA-1–60, and TRA-1–81) that have been used routinely to characterize embryonic stem and EG cells. The cultured cells have been continuously passaged and found to be karyotypically normal and stable. Both XX and XY cell cultures have been obtained. Immunohistochemical analysis of embryoid bodies collected from these cultures revealed a wide variety of differentiated cell types, including derivatives of all three embryonic germ layers. Based on their origin and demonstrated properties, these human PGC-derived cultures meet the criteria for pluripotent stem cells and most closely resemble EG cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motor protein kinesin is implicated in the intracellular transport of organelles along microtubules. Kinesin light chains (KLCs) have been suggested to mediate the selective binding of kinesin to its cargo. To test this hypothesis, we isolated KLC cDNA clones from a CHO-K1 expression library. Using sequence analysis, they were found to encode five distinct isoforms of KLCs. The primary region of variability lies at the carboxyl termini, which were identical or highly homologous to carboxyl-terminal regions of rat KLC B and C, human KLCs, sea urchin KLC isoforms 1–3, and squid KLCs. To examine whether the KLC isoforms associate with different cytoplasmic organelles, we made an antibody specific for a 10-amino acid sequence unique to B and C isoforms. In an indirect immunofluorescence assay, this antibody specifically labeled mitochondria in cultured CV-1 cells and human skin fibroblasts. On Western blots of total cell homogenates, it recognized a single KLC isoform, which copurified with mitochondria. Taken together, these data indicate a specific association of a particular KLC (B type) with mitochondria, revealing that different KLC isoforms can target kinesin to different cargoes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibroblasts, when plated on the extracellular matrix protein fibronectin (FN), rapidly spread and form an organized actin cytoskeleton. This process is known to involve both the central α5β1 integrin-binding and the C-terminal heparin-binding regions of FN. We found that within the heparin-binding region, the information necessary for inducing organization of stress fibers and focal contacts was located in a 29–amino acid segment of FN type III module 13 (III13). We did not find a cytoskeleton-organizing role for repeat III14, which had previously been implicated in this process. Within III13, the same five basic amino acids known to be most important for heparin binding were also necessary for actin organization. A substrate of III13 alone was only weakly adhesive but strongly induced formation of filopodia and lamellipodia. Stress fiber formation required a combination of III13 and III7–11 (which contains the integrin α5β1 recognition site), either as a single fusion protein or as separate polypeptides, and the relative amounts of the two binding sites appeared to determine whether stress fibers or filopodia and lamellipodia were the predominant actin structures formed. We propose that a balance of signals from III13 and from integrins regulates the type of actin structures assembled by the cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widely used immunosuppressant cyclosporine A (CSA) blocks nuclear translocation of the transcription factor, NF-AT (nuclear factor of activated T cells), preventing its activity. mRNA for several NF-AT isoforms has been shown to exist in cells outside of the immune system, suggesting a possible mechanism for side effects associated with CSA treatment. In this study, we demonstrate that CSA inhibits biochemical and morphological differentiation of skeletal muscle cells while having a minimal effect on proliferation. Furthermore, in vivo treatment with CSA inhibits muscle regeneration after induced trauma in mice. These results suggest a role for NF-AT–mediated transcription outside of the immune system. In subsequent experiments, we examined the activation and cellular localization of NF-AT in skeletal muscle cells in vitro. Known pharmacological inducers of NF-AT in lymphoid cells also stimulate transcription from an NF-AT–responsive reporter gene in muscle cells. Three isoforms of NF-AT (NF-ATp, c, and 4/x/c3) are present in the cytoplasm of muscle cells at all stages of myogenesis tested. However, each isoform undergoes calcium-induced nuclear translocation from the cytoplasm at specific stages of muscle differentiation, suggesting specificity among NF-AT isoforms in gene regulation. Strikingly, one isoform (NF-ATc) can preferentially translocate to a subset of nuclei within a single multinucleated myotube. These results demonstrate that skeletal muscle cells express functionally active NF-AT proteins and that the nuclear translocation of individual NF-AT isoforms, which is essential for the ability to coordinate gene expression, is influenced markedly by the differentiation state of the muscle cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yolk sac, first site of hematopoiesis during mammalian development, contains not only hematopoietic stem cells but also the earliest precursors of endothelial cells. We have previously shown that a nonadherent yolk sac cell population (WGA+, density <1.077, AA4.1+) can give rise to B cells, T cells, and myeloid cells both in vitro and in vivo. We now report on the ability of a yolk sac-derived cloned endothelial cell line (C166) to provide a suitable microenvironment for expansion of these early precursor cells. Single day 10 embryonic mouse yolk sac hematopoietic stem cells were expanded >100 fold within 8 days by coculture with irradiated C166 cells. Colony-forming ability was retained for at least three passages in vitro, with retention of the ability to differentiate into T-cell, B-cell, and myeloid lineages. Stem cell properties were maintained by a significant fraction of nonadherent cells in the third passage, although these stem cells expressed a somewhat more mature cell surface phenotype than the initial yolk sac stem cells. When reintroduced into adult allogeneic immunocompromised (scid) hosts, they were able to give rise to all of the leukocyte lineages, including T cells, B cells, and myeloid cells. We conclude that yolk sac endothelial cells can support the stable proliferation of multipotential hematopoietic stem cells, thus generating adequate numbers of cells for study of the mechanisms involved in their subsequent development and differentiation, for in vivo hematopoietic restitution, and for potential use as a vehicle for gene transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EGFRvIII is a mutant epidermal growth factor receptor found in glioblastoma, and in carcinoma of the breast, ovary, and lung. The mutant receptor has a deletion in its extracellular domain that results in the formation of a new, tumor-specific extracellular sequence. Mice were immunized with a synthetic peptide corresponding to this sequence and purified EGFRvIII. A single chain antibody variable domain (scFv) phage display library of 8 × 106 members was made from the spleen of one immunized mouse. A scFv specific for EGFRvIII was isolated from this library by panning with successively decreasing amounts of synthetic peptide. This was used to make an immunotoxin by fusing the scFv DNA sequence to sequences coding for domains II and III of Pseudomonas exotoxin A. Purified immunotoxin had a Kd of 22 nM for peptide and a Kd of 11 nM for cell-surface EGFRvIII. The immunotoxin was very cytotoxic to cells expressing EGFRvIII, with an IC50 of 1 ng/ml (16 pM) on mouse fibroblasts transfected with EGFRvIII and an IC50 of 7–10 ng/ml (110–160 pM) on transfected glioblastoma cells. There was no cytotoxic activity at 1000 ng/ml on the untransfected parent glioblastoma cell line. The immunotoxin was completely stable upon incubation at 37°C for 24 h in human serum. The combination of good affinity, cytotoxicity and stability make this immunotoxin a candidate for further preclinical evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slow nonselective cation conductances play a central role in determining the excitability of many neurons, but heretofore this channel type has not been analyzed at the single-channel level. Neurotensin (NT) excites cultured dopaminergic neurons from the ventral tegmental area primarily by increasing such a cation conductance. Using the outside–out configuration of the patch clamp, we elicited single-channel activity of this NT-induced cation channel. Channel activity was blocked by the nonpeptide NT antagonist SR48692, indicating that the response was mediated by NT receptors. The channel opened in both solitary form and in bursts. The reversal potential was −4.2 ± 1.7 mV, and the elementary conductance was 31 pS at −67 mV with [Na+]o = 140 mM, [Cs+]o = 5 mM, [Na+]i = 88 mM, and [Cs+]i = 74 mM. Thus, the channel was permeable to both Na+ and Cs+. From these characteristics, it is likely that this channel is responsible for the whole-cell current we studied previously. In guanosine 5′-[γ-thio]triphosphate-loaded cells, NT irreversibly activated about half of the channel activity, suggesting that at least part of the response was mediated by a G protein. Similar channel activity could be induced occasionally in the cell-attached configuration by applying NT outside the patch region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The β cell-specific glucose-sensitive factor (GSF), which binds the A3 motif of the rat I and human insulin promoters, is modulated by extracellular glucose. A single mutation in the GSF binding site of the human insulin promoter abolishes the stimulation by high glucose only in normal islets, supporting the suggested physiological role of GSF in the glucose-regulated expression of the insulin gene. GSF binding activity was observed in all insulin-producing cells. We have therefore purified this activity from the rat insulinoma RIN and found that a single polypeptide of 45 kDa was responsible for DNA binding. Its amino acid sequence, determined by microsequencing, provided direct evidence that GSF corresponds to insulin promoter factor 1 (IPF-1; also known as PDX-1) and that, in addition to its essential roles in development and differentiation of pancreatic islets and in β cell-specific gene expression, it functions as mediator of the glucose effect on insulin gene transcription in differentiated β cells. The human cDNA coding for GSF/IPF-1 has been cloned, its cell and tissue distribution is described. Its expression in the glucagon-producing cell line αTC1 transactivates the wild-type human insulin promoter more efficiently than the mutated construct. It is demonstrated that high levels of ectopic GSF/IPF-1 inhibit the expression of the human insulin gene in normal islets, but not in transformed βTC1 cells. These results suggest the existence of a control mechanism, such as requirement for a coactivator of GSF/IPF-1, which may be present in limiting amounts in normal as opposed to transformed β cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied single molecular interactions between surface-attached rat CD2, a T-lymphocyte adhesion receptor, and CD48, a CD2 ligand found on antigen-presenting cells. Spherical particles were coated with decreasing densities of CD48–CD4 chimeric molecules then driven along CD2-derivatized glass surfaces under a low hydrodynamic shear rate. Particles exhibited multiple arrests of varying duration. By analyzing the dependence of arrest frequency and duration on the surface density of CD48 sites, it was concluded that (i) arrests were generated by single molecular bonds and (ii) the initial bond dissociation rate was about 7.8 s−1. The force exerted on bonds was increased from about 11 to 22 pN; the detachment rate exhibited a twofold increase. These results agree with and extend studies on the CD2–CD48 interaction by surface plasmon resonance technology, which yielded an affinity constant of ≈104 M−1 and a dissociation rate of ≥6 s−1. It is concluded that the flow chamber technology can be an useful complement to atomic force microscopy for studying interactions between isolated biomolecules, with a resolution of about 20 ms and sensitivity of a few piconewtons. Further, this technology might be extended to actual cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Moloney murine leukemia virus (Mo-MLV)-based vectors to deliver therapeutic genes into target cells is limited by their inability to transduce nondividing cells. To test the capacity of HIV-based vectors to deliver genes into nondividing cells, we have generated replication-defective HIV type 1 (HIV-1) reporter vectors carrying neomycin phosphotransferase or mouse heat stable antigen, replacing the HIV-1 sequences encoding gp160. These vectors also harbor inactive vpr, vpu, and nef coding regions. Pseudotyped HIV-1 particles carrying either the ecotropic or the amphotropic Mo-MLV envelope proteins or the vesicular stomatitis virus G protein were released after single or double transfections of either human 293T or monkey COS-7 cells with titers of up to 107 colony-forming units per milliliter. A simple ultrafiltration procedure resulted in an additional 10- to 20-fold concentration of the pseudotyped particles. These vectors along with Mo-MLV-based vectors were used to transduce primary human skin fibroblasts and human peripheral blood CD34+ cells. The HIV-1 vector system was significantly more efficient than its Mo-MLV-based counterpart in transducing human skin fibroblasts arrested at the G0/G1 stage of the cell cycle by density-dependent inhibition of growth. Human CD34+ cells were transduced efficiently using HIV-1 pseudotype particles without prior stimulation with cytokines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although Fas ligand (FasL) is well characterized for its capacity to deliver a death signal through its receptor Fas, recent work demonstrates that FasL also can receive signals facilitating antigen (Ag)-specific proliferation of CD8+ T cells. The fact that the gld mutation differentially influences the proliferative capacity of CD8+ and CD4+ T cells presented the intriguing possibility that a single molecule may play opposing roles in these two subpopulations. The present study focuses on how these positive and negative regulatory roles are balanced. We show that naive CD4+ T cells are responsive to FasL-mediated costimulation on encounter with Ag when Fas-mediated death is prevented. Thus, the machinery responsible for transducing the FasL positive reverse signal operates in both CD4+ and CD8+ T cells. Instead, differential control of FasL expression distinguishes the role of FasL in these two T cell subpopulations. FasL costimulation occurs immediately on T cell receptor ligation and correlates with the up-regulation of FasL expression on CD8+ and naive CD4+ T cells, both of which are sensitive to the FasL costimulatory signal. Conversely, FasL-initiated death occurs late in an immune response when high levels of FasL expression are maintained on CD4+ T cells that are sensitive to Fas-mediated death, but not on CD8+ T cells that are relatively insensitive to this signal. This careful orchestration of FasL expression during times of susceptibility to costimulation and conversely, to death, endows FasL with the capacity to both positively and negatively regulate the peripheral T cell compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clustered DNA damages—two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands—are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1–1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive and rapid in situ method was developed to visualize sites of single-stranded (ss) DNA in cultured cells and in experimental test animals. Anti-bromodeoxyuridine antibody recognizes the halogenated base analog incorporated into chromosomal DNA only when substituted DNA is in the single strand form. After treatment of cells with DNA-damaging agents or γ irradiation, ssDNA molecules form nuclear foci in a dose-dependent manner within 60 min. The mammalian recombination protein Rad51 and the replication protein A then accumulate at sites of ssDNA and form foci, suggesting that these are sites of recombinational DNA repair.