991 resultados para sequence-dependent drug effects
Resumo:
Uveal melanoma metastases occur most commonly in the liver. Given the 50% mortality rate in patients at high risk of developing liver metastases, we tested an adjuvant intra-arterial hepatic (i.a.h.) chemotherapy with fotemustine after proton beam irradiation of the primary tumour. We treated 22 high-risk patients with adjuvant i.a.h. fotemustine. Planned treatment duration was 6 months, starting with four weekly doses of 100 mg/m(2), and after a 5-week rest, repeated every 3 weeks. The survival of this patient group was compared with that of a 3 : 1 matched control group randomly selected from our institutional database. Half of the patients experienced > or =grade 3 hepatotoxicity (one patient developing cholangitis 8 years later). Catheter-related complications occurred in 18%. With a median follow-up of 4.6 years for the fotemustine group and 8.5 years for the control group, median overall survival was 9 years [95% confidence interval (CI) 2.2-12.7] and 7.4 years (95% CI 5.4-12.7; P=0.5), respectively, with 5-year survival rates of 75 and 56%. Treatment with adjuvant i.a.h. fotemustine is feasible. However, toxicities are important. Although our data suggest a survival benefit, it was not statistically significant. Confirming such a benefit would require a large, internationally coordinated, prospective randomized trial.
Resumo:
PURPOSE: To compare the efficacy of antibiotic drops placed in the conjunctival cul-de-sac to antibiotic ointment applied to the lid margin in reduction of bacterial colonization on the lid margin. METHODS: A randomized, prospective, single-masked study was conducted on 19 patients with culture-proven colonization of bacteria on the lid margins. Ophthalmic eligibility criteria included the presence of > or =50 colony-forming units/mL (CFU/mL) of bacteria on both right and left lids. Each patient received one drop of ofloxacin in one eye every night for one week, followed by one drop once a week for one month. In the same manner, each patient received bacitracin ointment (erythromycin or gentamicin ointment if lid margin bacteria were resistant to bacitracin) to the lid margin of the fellow eye. Quantitative lid cultures were taken at initial visit, one week, one month, and two months. Fifteen volunteers (30 lids) served as controls. Lid cultures were taken at initial visit, one week, and one month. RESULTS: Both antibiotic drop and ointment reduced average bacterial CFU/mL at one week and one month. Average bacterial CFU/mL reestablished to baseline values at two months. There was no statistically significant difference between antibiotic drop and ointment in reducing bacterial colonization on the lid margin. CONCLUSION: Antibiotic drops placed in the conjunctival cul-de-sac appear to be as effective as ointment applied to the lid margins in reducing bacterial colonization in patients with > or =50 CFU/mL of bacteria on the lid margins.
Resumo:
In the present review, microvascular remodelling refers to alterations in the structure of resistance vessels contributing to elevated systemic vascular resistance in hypertension. We start with some historical aspects, underscoring the importance of Folkow's contribution made half a century ago. We then move to some basic concepts on the biomechanics of blood vessels, and explicit the definitions proposed by Mulvany for specific forms of remodelling, especially inward eutrophic and inward hypertrophic. The available evidence for the existence of remodelled resistance vessels in hypertension comes next, with relatively more weight given to human, in comparison with animal data. Mechanisms are discussed. The impact of antihypertensive drug treatment on remodelling is described, again with emphasis on human data. Some details are given on the three studies to date which point to remodelling of subcutaneous resistance arteries as an independent predictor of cardiovascular risk in hypertensive patients. We terminate by considering the potential role of remodelling in the pathogenesis of end-organ damage and in the perpetuation of hypertension.
Resumo:
In 1875, 7 years prior to the description of the Koch bacillus, Klebs visualized the first Streptococcus pneumoniae in a pleural fluid. Since then, this organism has played a determinant role in biomedical science. From a biological point of view, it was largely implicated in the development of passive and active immunization by serotherapy and vaccination, respectively. Genetic transformation was also first observed in S. pneumoniae, leading to the discovery of DNA. From a clinical point of view, S. pneumoniae is still today a prime cause of otitis media in children and of pneumonia in all age groups, as well as a predominant cause of meningitis and bacteremia. In adults, bacteremia is still entailed with a mortality of over 25%. Although S. pneumoniae remained very sensitive to penicillin for many years, penicillin-resistance has emerged and increased dramatically over the last 15 years. During this period of time, the frequency of penicillin-resistant isolates has increased from < or = 1% to frequencies varying from 20 to 60% in geographic areas as diverse as South Africa, Spain, France, Hungary, Iceland, Alaska, and numerous regions of the United States and South America. In Switzerland, the current frequency of penicillin-resistant pneumococci ranges between 5 and > or = 10%. The increase in penicillin-resistant pneumococci correlates with the intensive use of beta-lactam antibiotics. The mechanism of resistance is not due to bacterial production of penicillinase, but to an alteration of the bacterial target of penicillin, the so-called penicillin-binding proteins. Resistance is subdivided into (i) inter mediate level resistance (minimal inhibitory concentration [MIC] of penicillin of 0.1-1 mg/L) and (ii) high level resistance (MCI > or = 2 mg/L). The clinical significance of intermediate resistance remains poorly defined. On the other hand, highly resistant strains were responsible for numerous therapeutical failures, especially in cases of meningitis. Antibiotics recommended against penicillin-resistant pneumococci include cefotaxime, ceftriaxone, imipenem and in some instances vancomycin. However, penicillin-resistant pneumococci tend to present cross-resistances to all the antibotics of the beta-lactam family and could even become resistant to the last resort drugs mentioned above. Thus, in conclusion, the explosion of resistance to penicillin in pneumococci is a ubiquitous phenomenon which must be fought against by (i) a strict utilization of antibiotics, (ii) the practice of microbiological sampling of infected foci before treatment, (iii) the systematic surveillance of resistance profiles of pneumococci against antibiotics and (iv) the adequate vaccination of populations at risk.
Resumo:
PURPOSE: The objective of this study was to evaluate the long-term safety and pharmacokinetic profile of a dexamethasone-loaded poly-epsilon-caprolactone (PCL) intravitreous implant. METHODS: The PCL devices were prepared by compression and were inserted into the vitreous of pigmented rabbits. At different time points, vitreous samples were retrieved, and dexamethasone concentration was analyzed by high-performance liquid chromatography. The biodegradation of the implants was evaluated by scanning electron microscopy, and the dexamethasone remaining was evaluated at the end of follow-up. Clinical and histologic examinations were performed to evaluate the implant's tolerance. RESULTS: The PCL implant allows for a controlled and prolonged delivery of dexamethasone in rabbits eyes since it released the drug within the therapeutic range for at least 55 weeks. At 55 weeks approximately 79% of the drug was still present in the implant. Biodegradation study showed that PCL implants degradation is very slow. Clinical and histologic observations showed that the devices were very well tolerated in the rabbit eye. CONCLUSIONS: This study demonstrates the feasibility and tolerance of intravitreous PCL drug delivery systems, which can offer a wide range of applications for intraocular drug delivery because of their controlled and prolonged release over months or even years.
Resumo:
In ovarian follicles, cumulus cells provide the oocyte with small molecules that permit growth and control maturation. These nutrients reach the germinal cell through gap junction channels, which are present between the cumulus cells and the oocyte, and between the cumulus cells. In this study the involvement of intercellular communication mediated by gap junction channels on oocyte maturation of in vitro cultured bovine cumulus-oocyte complexes (COCs) was investigated. The stages of oocyte maturation were determined by Hoechst 33342 staining, which showed that 90% of COCs placed in the maturation medium for 24 h progress to the metaphase II stage. Bovine COC gap junction communication was disrupted initially using n-alkanols, which inhibit any passage through gap junctions. In the presence of 1-heptanol (3 mmol l(-1)) or octanol (3.0 mmol l(-1) and 0.3 mmol l(-1)), only 29% of the COCs reached metaphase II. Removal of the uncoupling agent was associated with restoration of oocyte maturation, indicating that treatment with n-alkanols was neither cytotoxic nor irreversible. Concentrations of connexin 43 (Cx43), the major gap junction protein expressed in the COCs, were decreased specifically using a recombinant adenovirus expressing the antisense Cx43 cDNA (Ad-asCx43). The efficacy of adenoviral infection was > 95% in cumulus cells evaluated after infection with recombinant adenoviruses expressing the green fluorescence protein. RT-PCR performed on total RNA isolated from Ad-asCx43-infected COCs showed that the rat Cx43 cDNA was transcribed. Western blot analysis revealed a three-fold decrease in Cx43 expression in COCs expressing the antisense RNA for Cx43. Injection of cumulus cells with Lucifer yellow demonstrated further that the resulting lower amount of Cx43 in infected COCs is associated with a two-fold decrease in the extent of coupling between cumulus cells. In addition, oocyte maturation was decreased by 50% in the infected COC cultures. These results indicate that Cx43-mediated communication between cumulus cells plays a crucial role in maturation of bovine oocytes.
Resumo:
Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis.
Resumo:
The effects of oxidized cholesterol on immune parameters were examined by using spleen lymphocytes and peritoneal exudate cells (PEC) derived from 5-week- (Young) and 9-month-old (Adult) rats. The immunoglobulin (Ig) G and IgM production was inhibited by oxidized cholesterol in the rats of both ages when lymphocytes were exposed to 30 micrograms/ml of oxidized cholesterol for 24 hr. The intracellular IgA level was also lowered by 30 micrograms/ml of oxidized cholesterol, irrespective of age. In contrast, IgE production was significantly increased by the addition of 30 micrograms/ml of oxidized cholesterol in only young lymphocytes. Moreover, oxidized cholesterol enhanced the intracellular histamine accumulation in only adult PEC, although the total histamine level produced by PEC was similar in the rats of both ages. These results thus suggest the possibility that oxidized cholesterol can have different effects on the age-related modulation of immune functions such as Igs production and histamine release.
Resumo:
Endocarditis prophylaxis following genitourinary or gastrointestinal procedures targets Enterococcus faecalis. Prophylaxis recommendations advocate oral amoxicillin (2 g in the United States and 3 g in the United Kingdom) in moderate-risk patients and intravenous amoxicillin (2 g) or vancomycin (1 g) plus gentamicin in high-risk patients. While ampicillin-resistant (or amoxicillin-resistant) E. faecalis is still rare, there is a concern that these regimens might fail against vancomycin-resistant and/or aminoglycoside-resistant isolates. The present study tested oral linezolid as an alternative. Rats with catheter-induced aortic vegetations were given prophylaxis simulating human pharmacokinetics of oral amoxicillin (2- to 3-g single dose), oral linezolid (600 mg, single or multiple oral doses every 12 h), or intravenous vancomycin (1-g single dose). Rats were then inoculated with the minimum inoculum infecting 90% of the animals (90% infective dose [ID(90)]) or with 10 times the ID(90) of the vancomycin-susceptible E. faecalis strain JH2-2 or the vancomycin-resistant (VanA phenotype) E. faecalis strain UCN41. Amoxicillin was also tested with two additional vancomycin-susceptible E. faecalis strains, 309 and 1209. Animals were sacrificed 3 days later. All the tested bacteria were susceptible to amoxicillin and gentamicin. Single-dose amoxicillin provided 100% protection against all four isolates at both the ID(90) and 10 times the ID(90). In contrast, linezolid required up to four consecutive doses to provide full protection against the vancomycin-resistant isolate. Vancomycin protected only against the vancomycin-susceptible strain. The high efficacy of single-dose oral amoxicillin suggests that this regimen could be used for prophylaxis in both moderate-risk and high-risk patients without additional aminoglycosides. Linezolid appears to be less reliable, at least against the vancomycin-resistant strain.
Resumo:
The three isotypes of peroxisome proliferator-activated receptors (PPARs), PPARalpha, beta/delta and gamma, are ligand-inducible transcription factors that belong to the nuclear hormone receptor family. PPARs are implicated in the control of inflammatory responses and in energy homeostasis and thus, can be defined as metabolic and anti-inflammatory transcription factors. They exert their anti-inflammatory effects by inhibiting the induction of pro-inflammatory cytokines, adhesion molecules and extracellular matrix proteins or by stimulating the production of anti-inflammatory molecules. Furthermore, PPARs modulate the proliferation, differentiation and survival of immune cells including macrophages, B cells and T cells. This review discusses the molecular mechanisms by which PPARs and their ligands modulate the inflammatory response. In addition, it presents recent developments implicating PPAR specific ligands in potential treatments of inflammation-related diseases, such as atherosclerosis, inflammatory bowel diseases, Parkinson's and Alzheimer's diseases.
Resumo:
The experimental and clinical values of amoxycillin/clavulanate in severe Staphylococcus aureus infections are reviewed. Experimentally, amoxycillin/clavulanate was highly effective in the treatment of acute endocarditis due to methicillin-sensitive isolates of S. aureus (MSSA) in rats. In addition, high doses of amoxycillin/clavulanate also cured experimental endocarditis due to methicillin-resistant strains of S. aureus (MRSA) in the animal model. In the clinical setting, a review of 86 patients with either community- or hospital-acquired bacteraemia due to MSSA showed that intravenous treatment with amoxycillin/clavulanate was adequate for empirical (and apparently also long-term) therapy of such severe infections. However, the retrospective nature of the analysis did not allow assessment of the relative efficacy of amoxycillin/clavulanate as compared with standard anti-staphylococcal drugs, such as flucloxacillin or vancomycin. Further prospective studies are warranted to address this issue. Thus, amoxycillin/clavulanate appears to be a good candidate for empirical treatment of severe infections that may be caused by MSSA. Usage of amoxycillin/clavulanate against MRSA is, however, still experimental and is not currently advocated for the treatment of MRSA infections in humans.
Resumo:
The canine distemper virus (CDV) belongs to the Morbillivirus genus which includes important human pathogens like the closely related measles virus. CDV infection can reach the nervous system where it causes serious malfunctions. Although this pathology is well described, the molecular events in brain infection are still poorly understood. Here we studied infection in vitro by CDV using a model of dissociated cell cultures from newborn rat hippocampus. We used a recombinant CDV closely related to the neurovirulent A75/17 which also expresses the enhanced green fluorescent protein. We found that infected neurons and astrocytes could be clearly detected, and that infection spreads only slowly to neighboring cells. Interestingly, this infection causes a massive cell death of neurons, which includes also non-infected neurons. Antagonists of NMDA-type or alpha-amino-3-hydroxy-5-methylisoxazole-4-propinate (AMPA)-type glutamate receptors could slow down this neuron loss, indicating an involvement of the glutamatergic system in the induction of cell death in infected and non-infected cells. Finally, we show that, following CDV infection, there is a steady increase in extracellular glutamate in infected cultures. These results indicate that CDV infection induces excitotoxic insults on neurons via glutamatergic signaling.
Resumo:
Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI.
Resumo:
In rodents and nonhuman primates subjected to spinal cord lesion, neutralizing the neurite growth inhibitor Nogo-A has been shown to promote regenerative axonal sprouting and functional recovery. The goal of the present report was to re-examine the data on the recovery of the primate manual dexterity using refined behavioral analyses and further statistical assessments, representing secondary outcome measures from the same manual dexterity test. Thirteen adult monkeys were studied; seven received an anti-Nogo-A antibody whereas a control antibody was infused into the other monkeys. Monkeys were trained to perform the modified Brinkman board task requiring opposition of index finger and thumb to grasp food pellets placed in vertically and horizontally oriented slots. Two parameters were quantified before and following spinal cord injury: (i) the standard 'score' as defined by the number of pellets retrieved within 30 s from the two types of slots; (ii) the newly introduced 'contact time' as defined by the duration of digit contact with the food pellet before successful retrieval. After lesion the hand was severely impaired in all monkeys; this was followed by progressive functional recovery. Remarkably, anti-Nogo-A antibody-treated monkeys recovered faster and significantly better than control antibody-treated monkeys, considering both the score for vertical and horizontal slots (Mann-Whitney test: P = 0.05 and 0.035, respectively) and the contact time (P = 0.008 and 0.005, respectively). Detailed analysis of the lesions excluded the possibility that this conclusion may have been caused by differences in lesion properties between the two groups of monkeys.
Resumo:
OBJECTIVES: Daptomycin was tested in vitro and in rats with experimental endocarditis against the ampicillin-susceptible and vancomycin-susceptible Enterococcus faecalis JH2-2, the vancomycin-resistant (VanA type) mutant of strain JH2-2 (strain JH2-2/pIP819), and the ampicillin-resistant and vancomycin-resistant (VanB type) Enterococcus faecium D366. METHODS: Rats with catheter-induced aortic vegetations were treated with doses simulating intravenously kinetics in humans of daptomycin (6 mg/kg every 24 h), amoxicillin (2 g every 6 h), vancomycin (1 g every 12 h) or teicoplanin (12 mg/kg every 12 h). Treatment was started 16 h post-inoculation and continued for 2 days. RESULTS: MICs of daptomycin were 1, 1 and 2 mg/L, respectively, for strains JH2-2, JH2-2/pIP819 and D366. In time-kill studies, daptomycin showed rapid (within 2 h) bactericidal activity against all strains. Daptomycin was highly bound to rat serum proteins (89%). In the presence of 50% rat serum, simulating free concentrations, daptomycin killing was maintained but delayed (6-24 h). In vivo, daptomycin treatment resulted in 10 of 12 (83%), 9 of 11 (82%) and 11 of 12 (91%) culture-negative vegetations in rats infected with strains JH2-2, JH2-2/pIP819 and D366, respectively (P < 0.001 compared to controls). Daptomycin efficacy was comparable to that of amoxicillin and vancomycin for susceptible isolates. Daptomycin, however, was significantly (P < 0.05) more effective than teicoplanin against the glycopeptide-susceptible strain JH2-2 and superior to all comparators against resistant isolates. CONCLUSIONS: These results support the use of the newly proposed daptomycin dose of 6 mg/kg every 24 h for treatment of enterococcal infections in humans.