995 resultados para selection signature
Resumo:
Videogrammetry is an inexpensive and easy-to-use technology for spatial 3D scene recovery. When applied to large scale civil infrastructure scenes, only a small percentage of the collected video frames are required to achieve robust results. However, choosing the right frames requires careful consideration. Videotaping a built infrastructure scene results in large video files filled with blurry, noisy, or redundant frames. This is due to frame rate to camera speed ratios that are often higher than necessary; camera and lens imperfections and limitations that result in imaging noise; and occasional jerky motions of the camera that result in motion blur; all of which can significantly affect the performance of the videogrammetric pipeline. To tackle these issues, this paper proposes a novel method for automating the selection of an optimized number of informative, high quality frames. According to this method, as the first step, blurred frames are removed using the thresholds determined based on a minimum level of frame quality required to obtain robust results. Then, an optimum number of key frames are selected from the remaining frames using the selection criteria devised by the authors. Experimental results show that the proposed method outperforms existing methods in terms of improved 3D reconstruction results, while maintaining the optimum number of extracted frames needed to generate high quality 3D point clouds.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
At low mass flow rates axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past - primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focussed on the level of irregularity in the blade passing signature in the rotor tip region. In general, this irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of the flow irregularity, but little effort has been made to characterise the irregularity, or to understand its underlying causes. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity which accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether this irregularity observed in the pre-stall flow field is due to random turbulence, or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity will not be viable in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. Copyright © 2011 by ASME.
Resumo:
The oxygen vacancy has been inferred to be the critical defect in HfO 2, responsible for charge trapping, gate threshold voltage instability, and Fermi level pinning for high work function gates, but it has never been conclusively identified. Here, the electron spin resonance g tensor parameters of the oxygen vacancy are calculated, using methods that do not over-estimate the delocalization of the defect wave function, to be g xx = 1.918, g yy = 1.926, g zz = 1.944, and are consistent with an observed spectrum. The defect undergoes a symmetry lowering polaron distortion to be localized mainly on a single adjacent Hf ion. © 2012 American Institute of Physics.
Resumo:
Matching a new technology to an appropriate market is a major challenge for new technology-based firms (NTBF). Such firms are often advised to target niche-markets where the firms and their technologies can establish themselves relatively free of incumbent competition. However, technologies are diverse in nature and do not benefit from identical strategies. In contrast to many Information and Communication Technology (ICT) innovations which build on an established knowledge base for fairly specific applications, technologies based on emerging science are often generic and so have a number of markets and applications open to them, each carrying considerable technological and market uncertainty. Each of these potential markets is part of a complex and evolving ecosystem from which the venture may have to access significant complementary assets in order to create and sustain commercial value. Based on dataset and case study research on UK advanced material university spin-outs (USO), we find that, contrary to conventional wisdom, the more commercially successful ventures were targeting mainstream markets by working closely with large, established competitors during early development. While niche markets promise protection from incumbent firms, science-based innovations, such as new materials, often require the presence, and participation, of established companies in order to create value. © 2012 IEEE.
Resumo:
At low mass flow rates, axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past---primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focused on the level of irregularity in the blade passing signature in the rotor tip region. In general, the irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of flow irregularity, but little effort has been made to characterize the irregularity itself, or to understand its underlying cause. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance size and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity that accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether the irregularity observed in the prestall flow field is due to random turbulence or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity would be difficult to implement in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. © 2013 American Society of Mechanical Engineers.
Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data
Resumo:
We present a nonparametric Bayesian method for disease subtype discovery in multi-dimensional cancer data. Our method can simultaneously analyse a wide range of data types, allowing for both agreement and disagreement between their underlying clustering structure. It includes feature selection and infers the most likely number of disease subtypes, given the data. We apply the method to 277 glioblastoma samples from The Cancer Genome Atlas, for which there are gene expression, copy number variation, methylation and microRNA data. We identify 8 distinct consensus subtypes and study their prognostic value for death, new tumour events, progression and recurrence. The consensus subtypes are prognostic of tumour recurrence (log-rank p-value of $3.6 \times 10^{-4}$ after correction for multiple hypothesis tests). This is driven principally by the methylation data (log-rank p-value of $2.0 \times 10^{-3}$) but the effect is strengthened by the other 3 data types, demonstrating the value of integrating multiple data types. Of particular note is a subtype of 47 patients characterised by very low levels of methylation. This subtype has very low rates of tumour recurrence and no new events in 10 years of follow up. We also identify a small gene expression subtype of 6 patients that shows particularly poor survival outcomes. Additionally, we note a consensus subtype that showly a highly distinctive data signature and suggest that it is therefore a biologically distinct subtype of glioblastoma. The code is available from https://sites.google.com/site/multipledatafusion/
Resumo:
Planet bearings of wind turbine epicyclic gearboxes are considered as one of the most critical components due to their high failure rate. In order to develop effective vibration based detection algorithms for these bearings, a thorough understanding of their vibration signature is required. In this paper, we investigate the vibration behaviour of an epicyclic gearbox in the presence of a defective planet bearing both theoretically and experimentally. We also identify different sources of modulation sidebands using an analytical model which includes ring gear flexibility and planet bearing defects. The findings from this work will help engineers to develop more effective fault detection algorithms.
Generalized Spike-and-Slab Priors for Bayesian Group Feature Selection Using Expectation Propagation
Resumo:
Impedance control can be used to stabilize the limb against both instability and unpredictable perturbations. Limb posture influences motor noise, energy usage and limb impedance as well as their interaction. Here we examine whether subjects use limb posture as part of a mechanism to regulate limb stability. Subjects performed stabilization tasks while attached to a two dimensional robotic manipulandum which generated a virtual environment. Subjects were instructed that they could perform the stabilization task anywhere in the workspace, while the chosen postures were tracked as subjects repeated the task. In order to investigate the mechanisms behind the chosen limb postures, simulations of the neuro-mechanical system were performed. The results indicate that posture selection is performed to provide energy efficiency in the presence of force variability.
Resumo:
The cyprinid fish genus Sinocyclocheilus, as the most cavefish rich genus, includes many species showing striking adaptation to caves and convergent reduction or even loss of eyes and pigmentation. RH1 is responsible for dim vision. In order to explore the evolution of RH1 gene in this genus, we sequenced the complete gene from 28 individuals of 16 representative species of Sinocyclocheilus, with cave and surface species included. Phylogenetic analyses supported the monophyly of Sinocyclocheilus and polyphyly of the cave species. Codon models implemented in PAML were used to infer the evolution of RH1. We found that Sinocyclocheilus had a significantly higher evolutionary rate for amino acids than other cyprinid fishes compared, which might be the result of relaxation of purifying selection and could be ascribed to cave habit of this genus. In contrast to previous hypotheses, both cave and surface lineages exhibited a similar rate of molecular evolution, so the RH1 of cave species may still be functional, although these species were highly adapted to cave environment. Two amino acid substitutions (D83G and E122V) that were not reported before were found, which may be useful for site-directed mutagenesis in the future.
Resumo:
This paper examines the impact of two simple precoding schemes on the capacity of 3 × 3 MIMO-enabled radio-over-fiber (RoF) distributed antenna systems (DAS) with excess transmit antennas. Specifically, phase-shift-only transmit beamforming and antenna selection are compared. It is found that for two typical indoor propagation scenarios, both strategies offer double the capacity gain that non-precoding MIMO DAS offers over traditional MIMO collocated antenna systems (CAS), with capacity improvements of 3.2-4.2 bit/s/Hz. Further, antenna selection shows similar performance to phase-only beamforming, differing by <0.5% and offering median capacities of 94 bit/s/Hz and 82 bit/s/Hz in the two propagation scenarios respectively. Because optical DASs enable precise, centralized control of remote antennas, they are well suited for implementing these beamforming schemes. Antenna selection, in particular, is a simple and effective means of increasing MIMO DAS capacity. © 2013 IEEE.