958 resultados para second-order model
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.
Resumo:
We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations.
Resumo:
Report for the scientific sojourn carried out at the University of New South Wales from February to June the 2007. Two different biogeochemical models are coupled to a three dimensional configuration of the Princeton Ocean Model (POM) for the Northwestern Mediterranean Sea (Ahumada and Cruzado, 2007). The first biogeochemical model (BLANES) is the three-dimensional version of the model described by Bahamon and Cruzado (2003) and computes the nitrogen fluxes through six compartments using semi-empirical descriptions of biological processes. The second biogeochemical model (BIOMEC) is the biomechanical NPZD model described in Baird et al. (2004), which uses a combination of physiological and physical descriptions to quantify the rates of planktonic interactions. Physical descriptions include, for example, the diffusion of nutrients to phytoplankton cells and the encounter rate of predators and prey. The link between physical and biogeochemical processes in both models is expressed by the advection-diffusion of the non-conservative tracers. The similarities in the mathematical formulation of the biogeochemical processes in the two models are exploited to determine the parameter set for the biomechanical model that best fits the parameter set used in the first model. Three years of integration have been carried out for each model to reach the so called perpetual year run for biogeochemical conditions. Outputs from both models are averaged monthly and then compared to remote sensing images obtained from sensor MERIS for chlorophyll.
Resumo:
The quality of contracting institutions has been thought to be of second-order importance next to the impact that good property rights institutions can have on long-run growth. Using a large range of proxies for each type of institution, we find a robust negative link between the quality of contracting institutions and long-run growth when we condition on property rights and a number of additional macroeconomic variables. Although the result remains something of a puzzle, we present evidence which suggests that only when property rights institutions are good do contracting institutions appear also to be good for development. Good contracting institutions can reduce long-run growth when property rights are not secured, presumably because the gains from the (costly) contracting institutions cannot be realised. This suggests that contracting institutions can benefit growth, and that the sequence of institutional change can matter.
Resumo:
We consider linear optimization over a nonempty convex semi-algebraic feasible region F. Semidefinite programming is an example. If F is compact, then for almost every linear objective there is a unique optimal solution, lying on a unique \active" manifold, around which F is \partly smooth", and the second-order sufficient conditions hold. Perturbing the objective results in smooth variation of the optimal solution. The active manifold consists, locally, of these perturbed optimal solutions; it is independent of the representation of F, and is eventually identified by a variety of iterative algorithms such as proximal and projected gradient schemes. These results extend to unbounded sets F.
Resumo:
A growing number of studies have been addressing the relationship between theory of mind (TOM) and executive functions (EF) in patients with acquired neurological pathology. In order to provide a global overview on the main findings, we conducted a systematic review on group studies where we aimed to (1) evaluate the patterns of impaired and preserved abilities of both TOM and EF in groups of patients with acquired neurological pathology and (2) investigate the existence of particular relations between different EF domains and TOM tasks. The search was conducted in Pubmed/Medline. A total of 24 articles met the inclusion criteria. We considered for analysis classical clinically accepted TOM tasks (first- and second-order false belief stories, the Faux Pas test, Happe's stories, the Mind in the Eyes task, and Cartoon's tasks) and EF domains (updating, shifting, inhibition, and access). The review suggests that (1) EF and TOM appear tightly associated. However, the few dissociations observed suggest they cannot be reduced to a single function; (2) no executive subprocess could be specifically associated with TOM performances; (3) the first-order false belief task and the Happe's story task seem to be less sensitive to neurological pathologies and less associated to EF. Even though the analysis of the reviewed studies demonstrates a close relationship between TOM and EF in patients with acquired neurological pathology, the nature of this relationship must be further investigated. Studies investigating ecological consequences of TOM and EF deficits, and intervention researches may bring further contributions to this question.
Resumo:
In this paper we present a new, accurate form of the heat balance integral method, termed the Combined Integral Method (or CIM). The application of this method to Stefan problems is discussed. For simple test cases the results are compared with exact and asymptotic limits. In particular, it is shown that the CIM is more accurate than the second order, large Stefan number, perturbation solution for a wide range of Stefan numbers. In the initial examples it is shown that the CIM reduces the standard problem, consisting of a PDE defined over a domain specified by an ODE, to the solution of one or two algebraic equations. The latter examples, where the boundary temperature varies with time, reduce to a set of three first order ODEs.
Resumo:
A coercive estimate for a solution of a degenerate second order di fferential equation is installed, and its applications to spectral problems for the corresponding dif ferential operator is demonstrated. The suffi cient conditions for existence of the solutions of one class of the nonlinear second order diff erential equations on the real axis are obtained.
Resumo:
We discuss the optimality in L2 of a variant of the Incomplete Discontinuous Galerkin Interior Penalty method (IIPG) for second order linear elliptic problems. We prove optimal estimate, in two and three dimensions, for the lowest order case under suitable regularity assumptions on the data and on the mesh. We also provide numerical evidence, in one dimension, of the necessity of the regularity assumptions.
Mutigrid preconditioner for nonconforming discretization of elliptic problems with jump coefficients
Resumo:
In this paper, we present a multigrid preconditioner for solving the linear system arising from the piecewise linear nonconforming Crouzeix-Raviart discretization of second order elliptic problems with jump coe fficients. The preconditioner uses the standard conforming subspaces as coarse spaces. Numerical tests show both robustness with respect to the jump in the coe fficient and near-optimality with respect to the number of degrees of freedom.
Resumo:
A time-delayed second-order approximation for the front speed in reaction-dispersion systems was obtained by Fort and Méndez [Phys. Rev. Lett. 82, 867 (1999)]. Here we show that taking proper care of the effect of the time delay on the reactive process yields a different evolution equation and, therefore, an alternate equation for the front speed. We apply the new equation to the Neolithic transition. For this application the new equation yields speeds about 10% slower than the previous one
Resumo:
Compact expressions, complete through second order in electrical and/or mechanical anharmonicity, are given for the dynamic dipole vibrational polarizability and dynamic first and second vibrational hyperpolarizabilities. Certain contributions not previously formulated are now included
Resumo:
Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B 3u←C2H4X̃1 Ag band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2 D4 results to be not as good as those for C2 H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested
Resumo:
The relevance of the fragment relaxation energy term and the effect of the basis set superposition error on the geometry of the BF3⋯NH3 and C2H4⋯SO2 van der Waals dimers have been analyzed. Second-order Møller-Plesset perturbation theory calculations with the d95(d,p) basis set have been used to calculate the counterpoise-corrected barrier height for the internal rotations. These barriers have been obtained by relocating the stationary points on the counterpoise-corrected potential energy surface of the processes involved. The fragment relaxation energy can have a large influence on both the intermolecular parameters and barrier height. The counterpoise correction has proved to be important for these systems
Resumo:
Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary