862 resultados para running text
Resumo:
We propose a mathematical model for the movement in absorbing materials of photorefractive holograms under feedback constraints. We use this model to analyze the speed of a fringe-locked running hologram in photorefractive sillenite crystals that usually exhibit a strong absorption effect. Fringe-locked experiments permit us to compute the quantum efficiency for the photogeneration of charge carriers in photorefractive crystals if the effect of bulk absorption and the effective value of the externally applied field are adequately taken into consideration. A Bi12TiO20 sample was measured with the 532-nm laser wavelength, and a quantum efficiency of φ = 0.37 was obtained. Disregarding absorption leads to large errors in φ. © 2000 Optical Society of America.
Resumo:
The objective of the present study was to compare pulmonary gas exchange kinetics (VO 2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO 2max) and the intensity associated with the achievement of VO 2max (IVO 2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO 2max to determine the time to exhaustion at IVO 2max (Tlim) and the time constant of oxygen uptake kinetics (τ). The τ was significantly faster in trained group, both in cycling (EC = 28.2 ± 4.7 s; UC = 63.8 ± 25.0 s) and in running (ER = 28.5 ± 8.5 s; UR = 59.3 ± 12.0 s). Tlim of untrained was significantly lower in cycling (EC = 384.4 ± 66.6 s vs. UC; 311.1 ± 105.7 s) and higher in running (ER = 309.2 ± 176.6 s vs. UR = 439.8 ± 104.2 s). We conclude that the VO 2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO 2max in running and cycling. © 2003 Taylor & Francis Ltd.
Resumo:
We discuss phenomenological tests for the frozen infrared behavior of the running coupling constant and gluon propagators found in some solutions of Schwinger-Dyson equations of the gluonic sector of QCD. We verify that several observables can be used in order to select the different expressions of αs found in the literature. We test the effect of the nonperturbative coupling in the τ-lepton decay rate into nonstrange hadrons, in the ρ vector meson helicity density matrix that are produced in the χc2 → ρρ decay, in the photon to pion transition form factor, and compute the cross-sections for elastic proton-proton scattering and exclusive ρ production in deep inelastic scattering. These quantities depend on the infrared behavior of the coupling constant at different levels, we discuss the reasons for this dependence and argue that the existent and future data can be used to test the approximations performed to solve the Schwinger-Dyson equations and they already seem to select one specific infrared behavior of the coupling.
Resumo:
The higher concentration during exercise at which lactate entry in blood equals its removal is known as maximal lactate steady state (MLSS) and is considered an important indicator of endurance exercise capacity. The aim of the present study was to determine MLSS in running rats. Adult male Wistar sedentary rats, which were selected and adapted to treadmill running for three weeks, were used. After becoming familiarized with treadmill running, the rats were submitted to five exercise tests at 15, 20, 25, 30 and 35 m/min velocities. The velocity sequence was distributed at random. Each test consisted of continuous running for 25 min at one velocity or until the exhaustion. Blood lactate was determined at rest and each 5 min of exercise to find the MLSS. The running rats presented MLSS at the 20 m/min velocity, with blood lactate of 3.9±1.1 mmol/L. At the 15 m/min velocity, the blood lactate also stabilized, but at a lower concentration (3.2±1.1 mmol/L). There was a progressive increase in blood lactate concentration at higher velocities, and some animals reached exhaustion between the 10 th and 25 th minute of exercise. These results indicate that the protocol of MLSS can be used for determination of the maximal aerobic intensity in running rats.
Resumo:
We study the running of the QCD coupling with the momentum squared (Q 2) and the temperature scales in the high temperature limit (T > Tc), using a mass dependent renormalization scheme to build the Renormalization Group Equations. The approach used guaranty gauge invariance, through the use of the Hard Thermal Loop approximation, and independence of the vertex chosen to renormalize the coupling. In general, the dependence of the coupling with the temperature is not logarithmical, although in the region Q2 ∼ T2 the logarithm approximation is reasonable. Finally, as known from Debye screening, color charge is screened in the coupling. The number of flavors, however, is anti-screened.
Resumo:
The hypothalamic-pituitary-adrenal (HPA) axis is important in regulating energy metabolism and in mediating responses to stressors, including increasing energy availability during physical exercise. In addition, glucocorticoids act directly on the central nervous system and influence behavior, including locomotor activity. To explore potential changes in the HPA axis as animals evolve higher voluntary activity levels, we characterized plasma corticosterone (CORT) concentrations and adrenal mass in four replicate lines of house mice that had been selectively bred for high voluntary wheel running (HR lines) for 34 generations and in four nonselected control (C) lines. We determined CORT concentrations under baseline conditions and immediately after exposure to a novel stressor (40 min of physical restraint) in mice that were housed without access to wheels. Resting daytime CORT concentrations were approximately twice as high in HR as in C mice for both sexes. Physical restraint increased CORT to similar concentrations in HR and C mice; consequently, the proportional response to restraint was smaller in HR than in C animals. Adrenal mass did not significantly differ between HR and C mice. Females had significantly higher baseline and postrestraint CORT concentrations and significantly larger adrenal glands than males in both HR and C lines. Replicate lines showed significant variation in body mass, length, baseline CORT concentrations, and postrestraint CORT concentrations in one or both sexes. Among lines, both body mass and length were significantly negatively correlated with baseline CORT concentrations, suggesting that CORT suppresses growth. Our results suggest that selection for increased locomotor activity has caused correlated changes in the HPA axis, resulting in higher baseline CORT concentrations and, possibly, reduced stress responsiveness and a lower growth rate. © 2007 by The University of Chicago. All rights reserved.
Resumo:
The level of stress during acute or chronic exercise is important since higher levels of stress may impair homeostasis. The adrenal gland is an essential stress-responsive organ involved in the hypothalamic-pituitary-adrenal axis. The aim of the study was to analyze the sensitivity of different stress biomarkers of the adrenal gland during acute treadmill running at different intensities. Adult rats performed three 25 min running tests at velocities of 15, 20 and 25 m/min, for determination of maximum lactate steady state (MLSS). After obtaining individual MLSS animals were assigned to two groups: M, sacrificed after 25 minutes of exercise at MLSS, and AM, sacrificed after exercise at 25% above MLSS. For comparison, a control group C was sacrificed at rest. Blood corticosterone concentrations, as well, adrenal gland cholesterol and ascorbic acid concentrations were used as biomarkers. Serum corticosterone concentrations were higher after exercise in both M (1802,74±700,42) and AM (2027,96±724,94) groups when compared C group (467,11±262,12), but were not different as a function of exercise intensity. No difference in adrenal ascorbic acid (M=2,37±0,66; AM=2,11±0,50 and C=2,54±0,53) and cholesterol (M=1,04±0,12; AM=0,91±0,31 and C=1,15±0,40) levels were observed when the three groups were compared. Serum corticosterone concentrations showed to be sensitive to acute treadmill exercise intensity. On the other hand, ascorbic acid and cholesterol concentrations in adrenal were biomarkers not adequate to evaluate exercise stress in rats.
Resumo:
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Resumo:
Locomotion is central to behavior and intrinsic to many fitnesscritical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from postural costs (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S males might partly explain the apparent selection limit for wheel running observed for over 15 generations. © 2009 by The University of Chicago. All rights reserved.
Resumo:
Includes bibliography
Resumo:
The aim of this study was to validate a non-invasive protocol to determine aerobic and anaerobic capacity of treadmill running rats. Thirteen male Wistar rats (90 days old) were submitted to 4 exercise tests, consisting of running at 25, 30, 35 and 40 m min-1, continuously until exhaustion. For the critical velocity (CV) and anaerobic running capacity (ARC) estimations, the hyperbolic curve (velocity versus time to exhaustion (tlim)) was linearized to V= CV+ARC/tlim, where the CV and ARC were linear and slope coefficients, respectively. In order to verify if the CV was the maximal aerobic intensity, the rats were submitted to the maximal lactate steady state test (MLSS) composed of three 25-minute tests of continuous running trials at 15, 20 and 25 m min-1, with blood collection every 5 minutes. The CV was obtained at 22.8±0.7 m min-1 and the ARC, at 26.80±2.77 m. The MLSS was observed at 20m min-1, with blood lactate 3.84 ± 0.31 mmol L-1. There was a progressive increase in lactate concentration at 25 m min-1. The CV and MLSS were different, but presented a high and significant correlation (r=0.81). These results indicate that the non-invasive protocol can be used for physical evaluation of aerobic running rats, but the ARC should still be further investigated.
Resumo:
A simple and applicable method for non-exhaustive aerobic evaluation in running rats is described. Wistar rats were submitted to running test at different velocities (10, 15, 20, 25 m/min) with 48 h recovery among them. At each velocity, the rats ran two bouts of 5 min with 2 min of rest between bouts. Blood samples were collected at the end of each bout for lactate determination. For each intensity, delta lactate was calculated and using deltas obtained by four tests, an individual linear interpolation was plotted. The y-intercept of linear interpolation was the null delta lactate equivalent to the critical velocity (CV). To verify the lactate stabilization at CV, the animals were submitted to 25 min of continuous exercise (15, 20, 25 m/min), with blood collection every 5 min. The estimated CV was 16.6±0.7 m/min, with significant linear regressions (R=0.90±0.03). The rats presented maximal lactate steady state (MLSS) at 3.9±0.4 mmol/L, at 20 m/min. The CV was less than MLSS but significantly correlated with this parameter (r=0.78). This non-exhaustive test seems to be valid for the aerobic evaluation of sedentary rats and this protocol underestimates the MLSS in 20%. This test seems to be the interesting method for the evaluation of rats submitted to acute exercise or physical training.
Resumo:
Purpose. The purpose of this study was to evaluate the discrepancies between abstracts presented at the IADR meeting (2004-2005) and their full-text publication. Material and Methods. Abstracts from the Prosthodontic Section of IADR meeting were obtained. The following information was collected: abstract title, number of authors, study design, statistical analysis, outcome, and funding source. PubMed was used to identify the full-text publication of the abstracts. The discrepancies between the abstract and the full-text publication were examined, categorized as major and minor discrepancies, and quantified. The data were collected and analyzed using descriptive analysis. Frequency and percentage of major and minor discrepancies were calculated. Results. A total of 109 (95.6%) articles showed changes from their abstracts. Seventy-four (65.0%) and 105 (92.0%) publications had at least one major and one minor discrepancies, respectively. Minor discrepancies were more prevalent (92.0%) than major discrepancies (65.0%). The most common minor discrepancy was observed in the title (80.7%), and most common major discrepancies were seen in results (48.2%). Conclusion. Minor discrepancies were more prevalent than major discrepancies. The data presented in this study may be useful to establish a more comprehensive structured abstract requirement for future meetings. © 2012 Soni Prasad et al.
Resumo:
Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VOax). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (90% VOax). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. © 2013 Cláudio de Oliveira Assumpção et al.
Resumo:
We report investigations on running holograms recorded in an azopolymer film made of a poly(methyl methacrylate) matrix doped with Disperse Red 1. Two-wave mixing experiments were carried out in the symmetrical transmission geometry. A stabilization technique was employed for active control of the phase shift between the real-time hologram and the interference pattern. Depending on the imposed phase shift, a running hologram propagates in the material in the form of an isomerization wave created by a continuous erasing-rewriting process. Diffraction efficiencies and the hologram velocities were measured as functions of the holographic phase shift at the wavelengths 515 and 488 nm. The experimental results were compared to theoretical curves obtained from a simplified model of the isomerization kinetics. The selective contributions of the phase and the amplitude gratings to the whole hologram were also determined. © 2013 Springer-Verlag Berlin Heidelberg.