958 resultados para relaxation structurelle
Resumo:
Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.
Resumo:
Objectives: To examine the trends in the prescribing of subsidised proton pump inhibitors (PPIs) and histamine receptor antagonists (H2RAs), in the Australian population from 1995 to 2006 to encourage discussion regarding appropriate clinical use. PPIs and H2RAs are the second highest drug cost to the publicly subsidised Pharmaceutical Benefits Scheme (PBS). Design: Government data on numbers of subsidised scripts, quantity and doses for PPIs and H2RAs were analysed by gender and age, dose and indication. Main outcome measure: Drug utilisation as DDD [defined daily dose]/1000 population/day. Results: The use of combined PPIs increased by 1318%. Utilisation increased substantially after the relaxation of the subsidised indications for PPIs in 2001. Omeprazole had the largest market share but was substituted by its S-enantiomer esomeprazole after its introduction in 2002. There was considerable use in the elderly with the peak use being in those aged 80 years and over. The utilisation of H2RAs declined 72% over 12 years. Conclusions: PPI use has increased substantially, not only due to substitution of H2RAs but to expansion in the overall market. Utilisation does not appear to be commensurate with prevalence of gastro-oesophageal reflux disease (GORD) nor with prescribing guidelines for PPIs, with significant financial costs to patients and PBS. This study encourages clinical discussion regarding quality use of these medicines. © 2010 John Wiley & Sons, Ltd.
Resumo:
Eutrophication favours harmful algal blooms worldwide. The blooms cause toxic outbreaks and deteriorated recreational and aesthetic values, causing both economic loss and illness or death of humans and animals. The Baltic Sea is the world s only large brackish water habitat with recurrent blooms of toxic cyanobacteria capable of biological fixation of atmospheric nitrogen gas. Phosphorus is assumed to be the main limiting factor, along with temperature and light, for the growth of these cyanobacteria. This thesis evaluated the role of phosphorus nutrition as a regulating factor for the occurrence of nitrogen-fixing cyanobacteria blooms in the Baltic Sea, utilising experimental laboratory and field studies and surveys on varying spatial scales. Cellular phosphorus sources were found to be able to support substantial growth of the two main bloom forming species Aphanizomenon sp. and Nodularia spumigena. However, N. spumigena growth seemed independent of phosphorus source, whereas, Aphanizomenon sp. grew best in a phosphate enriched environment. Apparent discrepancies with field observations and experiments are explained by the typical seasonal temperature dependent development of Aphanizomenon sp. and N. spumigena biomass allowing the two species to store ambient pre-bloom excess phosphorus in different ways. Field experiments revealed natural cyanobacteria bloom communities to be predominantly phosphorus deficient during blooms. Phosphate additions were found to increase the accumulation of phosphorus relatively most in the planktonic size fraction dominated by the nitrogen-fixing cyanobacteria. Aphanizomenon sp. responded to phosphate additions whereas the phosphorus nutritive status of N. spumigena seemed independent of phosphate addition. The seasonal development of phosphorus deficiency is different for the two species with N. spumigena showing indications of phosphorus deficiency during a longer time period in the open sea. Coastal upwelling introduces phosphorus to the surface layer during nutrient deficient conditions in summer. The species-specific ability of Aphanizomenon sp. and N. spumigena to utilise phosphate enrichment of the surface layer caused by coastal upwelling was clarified. Typical bloom time vertical distributions of biomass maxima were found to render N. spumigena more susceptible to advection by surface currents caused by coastal upwellings. Aphanizomenon sp. populations residing in the seasonal thermocline were observed to be able to utilise the phosphate enrichment and a bloom was produced with a two to three week time lag subsequent to the relaxation of upwelling. Consistent high concentrations of dissolved inorganic phosphorus, caused by persistent internal loading of phosphorus, was found to be the main source of phosphorus for large-scale pelagic blooms. External loads were estimated to contribute with only a fraction of available phosphorus for open sea blooms. Remineralization of organic forms of phosphorus along with vertical mixing to the permanent halocline during winter set the level of available phosphorus for the next growth season. Events such as upwelling are important in replenishing phosphate concentrations during the nutrient deplete growth season. Autecological characteristics of the two main bloom forming species favour Aphanizomenon sp. populations in utilising the abundant excess phosphate concentrations and phosphate pulses mediated through upwelling. Whilst, N. spumigena displays predominant phosphorus limited growth mode and relies on more scarce cellular phosphorus stores and presumably dissolved organic phosphorus compounds for growth. The Baltic Sea is hypothesised to be in an inhibited state of recovery due to the extensive historical external nutrient loading, extensive internal phosphorus loading and the substantial nitrogen load caused by cyanobacteria nitrogen fixation. This state of the sea is characterised as a vicious circle .
Resumo:
Nonlinear optical properties and carrier relaxation dynamics in graphene, suspended in three different solvents, are investigated using femtosecond (80 fs pulses) Z-scan and degenerate pump-probe spectroscopy at 790 nm. The results demonstrate saturable absorption property of graphene with a nonlinear absorption coefficient, beta of (similar to 2-9) x 10(-8) cm/W. Two distinct time scales associated with the relaxation of photoexcited carriers, a fast one in the range of 130-330 fs (related to carrier-carrier scattering) followed by it slower one in 3.5-4.9 ps range (associated with carrier-phonon scattering) are observed. (C) 2009 American Institute of Physics.
Resumo:
Magnetotransport measurements in pulsed fields up to 15 T have been performed on mercury cadmium telluride (Hg1-xCdxTe, x similar to 0.2) bulk as well as liquid phase epitaxially grown samples to obtain the resistivity and conductivity tensors in the temperature range 220-300 K. Mobilities and densities of various carriers participating in conduction have been extracted using both conventional multicarrier fitting (MCF) and mobility spectrum analysis. The fits to experimental data, particularly at the highest magnetic fields, were substantially improved when MCF is applied to minimize errors simultaneously on both resistivity and conductivity tensors. The semiclassical Boltzmann transport equation has been solved without using adjustable parameters by incorporating the following scattering mechanisms to fit the mobility: ionized impurity, polar and nonpolar optical phonons, acoustic deformation potential, and alloy disorder. Compared to previous estimates based on the relaxation time approximation with outscattering only, polar optical scattering and ionized impurity scattering limited mobilities are shown to be larger due to the correct incorporation of the inscattering term taking into account the overlap integrals in the valence band.
Resumo:
X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO-3TiO(2)-B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz-1 MHz frequency range were measured as a function of temperature (323-748 K). The dielectric constant and loss were found to be frequency independent in the 323-473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga's formula and found to be 16 ppm K-1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17 +/- 0.5 and 0.005 +/- 0.001, respectively at 323 K in the 1 kHz-1 MHz frequency range which may be of considerable interest to capacitor industry.
Resumo:
We study the problem of the coalescence of twisted flux tubes by assuming that the azimuthal field lines reconnect at a current sheet during the coalescence process and everywhere else the magnetic field is frozen in the fluid. We derive relations connecting the topology of the coalesced flux tube with the topologies of the initial flux tubes, and then obtain a structure equation for calculating the field configuration of the coalesced flux tube from the given topology. Some solutions for the two extreme cases of low-β plasma and high-β plasma are discussed. The coalesced flux tube has less twist than the initial flux tube. Magnetic helicity is found to be exactly conserved during the coalescence, but the assumptions in the model put a constraint on the energy dissipation so that we do not get a relaxation to the minimum-energy Taylor state in the low-β case. It is pointed out that the structure equation connecting the topology and the equilibrium configuration is quite general and can be of use in many two-dimensional flux tube problems.
Resumo:
Instrumented indentation experiments on a Zr-based bulk metallic glass (BMG) in as-cast, shot-peened and structurally relaxed conditions were conducted to examine the dependence of plastic deformation on its structural state. Results show significant differences in hardness, H, with structural relaxation increasing it and shot peening markedly reducing it, and slightly changed morphology of shear bands around the indents. This is in contrast to uniaxial compressive yield strength, sigma(y), which remains invariant with the change in the structural state of the alloys investigated. The plastic constraint factor, C = H/sigma(y), of the relaxed BMG increases compared with that of the as-cast glass, indicating enhanced pressure sensitivity upon annealing. In contrast, C of the shot-peened layer was found to be similar to that observed in crystalline metals, indicating that severe plastic deformation could eliminate pressure sensitivity. Microscopic origins for this result, in terms of shear transformation zones and free volume, are discussed.
Resumo:
The aim of the study was to compare the effect physical exercise and bright light has on mood in healthy, working-age subjects with varying degrees of depressive symptoms. Previous research suggests that exercise may have beneficial effects on mood at least in subjects with depression. Bright light exposure is an effective treatment of winter depression, and possibly of non-seasonal depression as well. Limited data exist on the effect of exercise and bright light on mood in non-clinical populations, and no research has been done on the combination of these interventions. Working-age subjects were recruited through occupational health centres and 244 subjects were randomized into intervention groups: exercise, either in bright light or normal lighting, and relaxation / stretching sessions, either in bright light or normal gym lighting. During the eight-week intervention in midwinter, subjects rated their mood using a self-rating version of the Hamilton Depression Scale with additional questions for atypical depressive symptoms. The main finding of the study was that both exercise and bright-light exposure were effective in treating depressive symptoms. When the interventions were combined, the relative reduction in the Hamilton Depression Scale was 40 to 66%, and in atypical depressive symptoms even higher, 45 to 85%. Bright light exposure was more effective than exercise in treating atypical depressive symptoms. No single factor could be found that would predict a good response to these interventions. In conclusion, aerobic physical exercise twice a week during wintertime was effective in treating depressive symptoms. Adding bright light exposure to exercise increased the benefit, especially by reducing atypical depressive symptoms. Since this is so, this treatment could prevent subsequent major depressive episodes among the population generally.
Resumo:
The properties of the generalized survival probability, that is, the probability of not crossing an arbitrary location R during relaxation, have been investigated experimentally (via scanning tunneling microscope observations) and numerically. The results confirm that the generalized survival probability decays exponentially with a time constant tau(s)(R). The distance dependence of the time constant is shown to be tau(s)(R)=tau(s0)exp[-R/w(T)], where w(2)(T) is the material-dependent mean-squared width of the step fluctuations. The result reveals the dependence on the physical parameters of the system inherent in the prior prediction of the time constant scaling with R/L-alpha, with L the system size and alpha the roughness exponent. The survival behavior is also analyzed using a contrasting concept, the generalized inside survival S-in(t,R), which involves fluctuations to an arbitrary location R further from the average. Numerical simulations of the inside survival probability also show an exponential time dependence, and the extracted time constant empirically shows (R/w)(lambda) behavior, with lambda varying over 0.6 to 0.8 as the sampling conditions are changed. The experimental data show similar behavior, and can be well fit with lambda=1.0 for T=300 K, and 0.5
Resumo:
Gastric motility disorders, including delayed gastric emptying (gastroparesis), impaired postprandial fundic relaxation, and gastric myoelectrical disorders, can occur in type 1 diabetes, chronic renal failure, and functional dyspepsia (FD). Symptoms like upper abdominal pain, early satiation, bloating, nausea and vomiting may be related to gastroparesis. Diabetic gastroparesis is related to autonomic neuropathy. Scintigraphy is the gold standard in measuring gastric emptying, but it is expensive, requires specific equipment, and exposes patients to radiation. It also gives information about the intragastric distribution of the test meal. The 13C-octanoic acid breath test (OBT) is an alternative, indirect method of measuring gastric emptying with a stable isotope. Electrogastrography (EGG) registers the slow wave originating in the pacemaker area of the stomach and regulating the peristaltic contractions of the antrum. This study compares these three methods of measuring gastric motility in patients with type 1 diabetes, functional dyspepsia, and chronic renal failure. Currently no effective drugs for treating gastric motility disorders are available. We studied the effect of nizatidine on gastric emptying, because in preliminary studies this drug has proven to have a prokinetic effect due to its cholinergic properties. Of the type 1 patients, 26% had delayed gastric emptying of solids as measured by scintigraphy. Abnormal intragastric distribution of the test meal occurred in 37% of the patients, indicating impaired fundic relaxation. The autonomic neuropathy score correlated positively with the gastric emptying rate of solids (P = 0.006), but HbA1C, plasma glucose levels, or abdominal symptoms were unrelated to gastric emptying or intragastric distribution of the test meal. Gastric emptying of both solids and liquids was normal in all FD patients but abnormal intragastric distribution occurred in 38% of the patients. Nizatidine improved symptom scores and quality of life in FD patients, but not significantly. Instead of enhancing, nizatidine slowed gastric emptying in FD patients (P < 0.05). No significant difference appeared in the frequency of the gastric slow waves measured by EGG in the patients and controls. The correlation between gastric half-emptying times of solids measured by scintigraphy and OBT was poor both in type 1 diabetes and FD patients. According to this study, dynamic dual-tracer scintigraphy is more accurate than OBT or EGG in measuring gastric emptying of solids. Additionally it provides information about gastric emptying of liquids and the intragastric distribution of the ingested test meal.
Resumo:
The coherent quantum evolution of a one-dimensional many-particle system after slowly sweeping the Hamiltonian through a critical point is studied using a generalized quantum Ising model containing both integrable and nonintegrable regimes. It is known from previous work that universal power laws of the sweep rate appear in such quantities as the mean number of excitations created by the sweep. Several other phenomena are found that are not reflected by such averages: there are two different scaling behaviors of the entanglement entropy and a relaxation that is power law in time rather than exponential. The final state of evolution after the quench is not characterized by any effective temperature, and the Loschmidt echo converges algebraically for long times, with cusplike singularities in the integrable case that are dynamically broadened by nonintegrable perturbations.
Resumo:
The rheological properties of polymer melts and other complex macromolecular fluids are often successfully modeled by phenomenological constitutive equations containing fractional differential operators. We suggest a molecular basis for such fractional equations in terms of the generalized Langevin equation (GLE) that underlies the renormalized Rouse model developed by Schweizer [J. Chem. Phys. 91, 5802 (1989)]. The GLE describes the dynamics of the segments of a tagged chain under the action of random forces originating in the fast fluctuations of the surrounding polymer matrix. By representing these random forces as fractional Gaussian noise, and transforming the GLE into an equivalent diffusion equation for the density of the tagged chain segments, we obtain an analytical expression for the dynamic shear relaxation modulus G(t), which we then show decays as a power law in time. This power-law relaxation is the root of fractional viscoelastic behavior.
Resumo:
Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde and characterized by scanning electron microscopy, differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 339.6 and 376.9 K depending on the dopant concentration. Ionic conductivity behavior of GHEs was studied with varying concentrations of gelatin, glutaraldehyde, and NaCl, and found to vary between 10(-3) and 10(-1) S cm(-1). GHEs have a potential window of about 1 V. Undoped and 0.25 N NaCl-doped GHEs follow Arrhenius equations with activation energy values of 1.94 and 1.88 x 10(-4) eV, respectively. Electrochemical supercapacitors (ESs) employing these GHEs in conjunction with Black Pearl Carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of 81 F g(-1), 75 degrees, and 0.03 s are obtained for 3 N NaCl-doped GHE, respectively. ES with pristine GHE exhibits a cycle life of 4.3 h vs 4.7 h for the ES with 3 N NaCl-doped GHE. (c) 2007 The Electrochemical Society.
Resumo:
(CH3)4NGeCl3 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (T1) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.