859 resultados para redox cycling
Resumo:
Damage from free radicals has been demonstrated in susceptible neuronal populations in cases of Alzheimer disease. In this study, we investigated whether iron, a potent source of the highly reactive hydroxyl radical that is generated by the Fenton reaction with H2O2, might contribute to the source of radicals in Alzheimer disease. We found, using a modified histochemical technique that relies on the formation of mixed valence iron complexes, that redox-active iron is associated with the senile plaques and neurofibrillary tangles—the pathological hallmark lesions of this disease. This lesion-associated iron is able to participate in in situ oxidation and readily catalyzes an H2O2-dependent oxidation. Furthermore, removal of iron was completely effected using deferoxamine, after which iron could be rebound to the lesions. Characterization of the iron-binding site suggests that binding is dependent on available histidine residues and on protein conformation. Taken together, these findings indicate that iron accumulation could be an important contributor toward the oxidative damage of Alzheimer disease.
Resumo:
We identified a protein, Aer, as a signal transducer that senses intracellular energy levels rather than the external environment and that transduces signals for aerotaxis (taxis to oxygen) and other energy-dependent behavioral responses in Escherichia coli. Domains in Aer are similar to the signaling domain in chemotaxis receptors and the putative oxygen-sensing domain of some transcriptional activators. A putative FAD-binding site in the N-terminal domain of Aer shares a consensus sequence with the NifL, Bat, and Wc-1 signal-transducing proteins that regulate gene expression in response to redox changes, oxygen, and blue light, respectively. A double mutant deficient in aer and tsr, which codes for the serine chemoreceptor, was negative for aerotaxis, redox taxis, and glycerol taxis, each of which requires the proton motive force and/or electron transport system for signaling. We propose that Aer and Tsr sense the proton motive force or cellular redox state and thereby integrate diverse signals that guide E. coli to environments where maximal energy is available for growth.
Slow cycling of unphosphorylated myosin is inhibited by calponin, thus keeping smooth muscle relaxed
Resumo:
A key unanswered question in smooth muscle biology is whether phosphorylation of the myosin regulatory light chain (RLC) is sufficient for regulation of contraction, or if thin-filament-based regulatory systems also contribute to this process. To address this issue, the endogenous RLC was extracted from single smooth muscle cells and replaced with either a thiophosphorylated RLC or a mutant RLC (T18A/S19A) that cannot be phosphorylated by myosin light chain kinase. The actin-binding protein calponin was also extracted. Following photolysis of caged ATP, cells without calponin that contained a nonphosphorylatable RLC shortened at 30% of the velocity and produced 65% of the isometric force of cells reconstituted with the thiophosphorylated RLC. The contraction of cells reconstituted with nonphosphorylatable RLC was, however, specifically suppressed in cells that contained calponin. These results indicate that calponin is required to maintain cells in a relaxed state, and that in the absence of this inhibition, dephosphorylated cross-bridges can slowly cycle and generate force. These findings thus provide a possible framework for understanding the development of latch contraction, a widely studied but poorly understood feature of smooth muscle.
Resumo:
Through the use of site-directed mutagenesis and chemical rescue, we have identified the proton acceptor for redox-active tyrosine D in photosystem II (PSII). Effects of chemical rescue on the tyrosyl radical were monitored by EPR spectroscopy. We also have acquired the Fourier–transform infrared (FT-IR) spectrum associated with the oxidation of tyrosine D and concomitant protonation of the acceptor. Mutant and isotopically labeled PSII samples are used to assign vibrational lines in the 3,600–3,100 cm−1 region to N-H modes of His-189 in the D2 polypeptide. When His-189 in D2 is changed to a leucine (HL189D2) in PSII, dramatic alterations of both EPR and FT-IR spectra are observed. When imidazole is introduced into HL189D2 samples, results from both EPR and FT-IR spectroscopy argue that imidazole is functionally reconstituted into an accessible pocket and that imidazole acts as a chemical mimic for His-189. Small perturbations of EPR and FT-IR spectra are consistent with access to this pocket in wild-type PSII, as well. Structures of the analogous site in bacterial reaction centers suggest that an accessible pocket, large enough to contain imidazole, is bordered by tyrosine D and His-189 in the D2 polypeptide. These data provide evidence that His-189 in the D2 polypeptide of PSII acts as a proton acceptor for redox-active tyrosine D and that proton transfer to the imidazole ring facilitates the efficient oxidation/reduction of tyrosine D.
Resumo:
We have added constitutively active MAP kinase/ERK kinase (MEK), an activator of the mitogen-activated protein kinase (MAPK) signaling pathway, to cycling Xenopus egg extracts at various times during the cell cycle. p42MAPK activation during entry into M-phase arrested the cell cycle in metaphase, as has been shown previously. Unexpectedly, p42MAPK activation during interphase inhibited entry into M-phase. In these interphase-arrested extracts, H1 kinase activity remained low, Cdc2 was tyrosine phosphorylated, and nuclei continued to enlarge. The interphase arrest was overcome by recombinant cyclin B. In other experiments, p42MAPK activation by MEK or by Mos inhibited Cdc2 activation by cyclin B. PD098059, a specific inhibitor of MEK, blocked the effects of MEK(QP) and Mos. Mos-induced activation of p42MAPK did not inhibit DNA replication. These results indicate that, in addition to the established role of p42MAPK activation in M-phase arrest, the inappropriate activation of p42MAPK during interphase prevents normal entry into M-phase.
Resumo:
Small GTPases of the Ypt/Rab family are involved in the regulation of vesicular transport. Cycling between the GDP- and GTP-bound forms and the accessory proteins that regulate this cycling are thought to be crucial for Ypt/Rab function. Guanine nucleotide exchange factors (GEFs) stimulate both GDP loss and GTP uptake, and GTPase-activating proteins (GAPs) stimulate GTP hydrolysis. Little is known about GEFs and GAPs for Ypt/Rab proteins. In this article we report the identification and initial characterization of two factors that regulate nucleotide cycling by Ypt1p, which is essential for the first two steps of the yeast secretory pathway. The Ypt1p-GEF stimulates GDP release and GTP uptake at least 10-fold and is specific for Ypt1p. Partially purified Ypt1p-GEF can rescue the inhibition caused by the dominant-negative Ypt1p-D124N mutant of in vitro endoplasmic reticulum-to-Golgi transport. This mutant probably blocks transport by inhibiting the GEF, suggesting that we have identified the physiological GEF for Ypt1p. The Ypt1p-GAP stimulates GTP hydrolysis by Ypt1p up to 54-fold, has a higher affinity for the GTP-bound form of Ypt1p than for the GDP-bound form, and is specific to a subgroup of exocytic Ypt proteins. The Ypt1p-GAP activity is not affected by deletion of two genes that encode known Ypt GAPs, GYP7 and GYP1, nor is it influenced by mutations in SEC18, SEC17, or SEC22, genes whose products are involved in vesicle fusion. The GEF and GAP activities for Ypt1p localize to particulate cellular fractions. However, contrary to the predictions of current models, the GEF activity localizes to the fraction that functions as the acceptor in an endoplasmic reticulum-to-Golgi transport assay, whereas the GAP activity cofractionates with markers for the donor. On the basis of our current and previous results, we propose a new model for the role of Ypt/Rab nucleotide cycling and the factors that regulate this process.
Resumo:
Fission yeast rad22+, a homologue of budding yeast RAD52, encodes a double-strand break repair component, which is dispensable for proliferation. We, however, have recently obtained a cell division cycle mutant with a temperature-sensitive allele of rad22+, designated rad22-H6, which resulted from a point mutation in the conserved coding sequence leading to one amino acid alteration. We have subsequently isolated rad22+ and its novel homologue rti1+ as multicopy suppressors of this mutant. rti1+ suppresses all the defects of cells lacking rad22+. Mating type switch-inactive heterothallic cells lacking either rad22+ or rti1+ are viable, but those lacking both genes are inviable and arrest proliferation with a cell division cycle phenotype. At the nonpermissive temperature, a synchronous culture of rad22-H6 cells performs DNA synthesis without delay and arrests with chromosomes seemingly intact and replication completed and with a high level of tyrosine-phosphorylated Cdc2. However, rad22-H6 cells show a typical S phase arrest phenotype if combined with the rad1-1 checkpoint mutation. rad22+ genetically interacts with rad11+, which encodes the large subunit of replication protein A. Deletion of rad22+/rti1+ or the presence of rad22-H6 mutation decreases the restriction temperature of rad11-A1 cells by 4–6°C and leads to cell cycle arrest with chromosomes incompletely replicated. Thus, in fission yeast a double-strand break repair component is required for a certain step of chromosome replication unlinked to repair, partly via interacting with replication protein A.
Resumo:
Evidence has been presented both for and against obligate retrograde movement of resident Golgi proteins through the endoplasmic reticulum (ER) during nocodazole-induced Golgi ministack formation. Here, we studied the nocodazole-induced formation of ministacks using phospholipase A2 (PLA2) antagonists, which have been shown previously to inhibit brefeldin A–stimulated Golgi-to-ER retrograde transport. Examination of clone 9 rat hepatocytes by immunofluorescence and immunoelectron microscopy revealed that a subset of PLA2 antagonists prevented nocodazole-induced ministack formation by inhibiting two different trafficking pathways for resident Golgi enzymes; at 25 μM, retrograde Golgi-to-ER transport was inhibited, whereas at 5 μM, Golgi-to-ER trafficking was permitted, but resident Golgi enzymes accumulated in the ER. Moreover, resident Golgi enzymes gradually redistributed from the juxtanuclear Golgi or Golgi ministacks to the ER in cells treated with these PLA2 antagonists alone. Not only was ER-to-Golgi transport of resident Golgi enzymes inhibited in cells treated with these PLA2 antagonists, but transport of the vesicular stomatitis virus G protein out of the ER was also prevented. These results support a model of obligate retrograde recycling of Golgi resident enzymes during nocodazole-induced ministack formation and provide additional evidence that resident Golgi enzymes slowly and constitutively cycle between the Golgi and ER.
Resumo:
Previous studies have found conflicting associations between susceptibility to activation-induced cell death and the cell cycle in T cells. However, most of the studies used potentially toxic pharmacological agents for cell cycle synchronization. A panel of human melanoma tumor-reactive T cell lines, a CD8+ HER-2/neu-reactive T cell clone, and the leukemic T cell line Jurkat were separated by centrifugal elutriation. Fractions enriched for the G0–G1, S, and G2–M phases of the cell cycle were assayed for T cell receptor-mediated activation as measured by intracellular Ca2+ flux, cytolytic recognition of tumor targets, and induction of Fas ligand mRNA. Susceptibility to apoptosis induced by recombinant Fas ligand and activation-induced cell death were also studied. None of the parameters studied was specific to a certain phase of the cell cycle, leading us to conclude that in nontransformed human T cells, both activation and apoptosis through T cell receptor activation can occur in all phases of the cell cycle.
Resumo:
Selenium has been increasingly recognized as an essential element in biology and medicine. Its biochemistry resembles that of sulfur, yet differs from it by virtue of both redox potentials and stabilities of its oxidation states. Selenium can substitute for the more ubiquitous sulfur of cysteine and as such plays an important role in more than a dozen selenoproteins. We have chosen to examine zinc–sulfur centers as possible targets of selenium redox biochemistry. Selenium compounds release zinc from zinc/thiolate-coordination environments, thereby affecting the cellular thiol redox state and the distribution of zinc and likely of other metal ions. Aromatic selenium compounds are excellent spectroscopic probes of the otherwise relatively unstable functional selenium groups. Zinc-coordinated thiolates, e.g., metallothionein (MT), and uncoordinated thiolates, e.g., glutathione, react with benzeneseleninic acid (oxidation state +2), benzeneselenenyl chloride (oxidation state 0) and selenocystamine (oxidation state −1). Benzeneseleninic acid and benzeneselenenyl chloride react very rapidly with MT and titrate substoichiometrically and with a 1:1 stoichiometry, respectively. Selenium compounds also catalyze the release of zinc from MT in peroxidation and thiol/disulfide-interchange reactions. The selenoenzyme glutathione peroxidase catalytically oxidizes MT and releases zinc in the presence of t-butyl hydroperoxide, suggesting that this type of redox chemistry may be employed in biology for the control of metal metabolism. Moreover, selenium compounds are likely targets for zinc/thiolate coordination centers in vivo, because the reactions are only partially suppressed by excess glutathione. This specificity and the potential to undergo catalytic reactions at low concentrations suggests that zinc release is a significant aspect of the therapeutic antioxidant actions of selenium compounds in antiinflammatory and anticarcinogenic agents.
Resumo:
The sulfur K-edge x-ray absorption spectra for the amino acids cysteine and methionine and their corresponding oxidized forms cystine and methionine sulfoxide are presented. Distinct differences in the shape of the edge and the inflection point energy for cysteine and cystine are observed. For methionine sulfoxide the inflection point energy is 2.8 eV higher compared with methionine. Glutathione, the most abundant thiol in animal cells, also has been investigated. The x-ray absorption near-edge structure spectrum of reduced glutathione resembles that of cysteine, whereas the spectrum of oxidized glutathione resembles that of cystine. The characteristic differences between the thiol and disulfide spectra enable one to determine the redox status (thiol to disulfide ratio) in intact biological systems, such as unbroken cells, where glutathione and cyst(e)ine are the two major sulfur-containing components. The sulfur K-edge spectra for whole human blood, plasma, and erythrocytes are shown. The erythrocyte sulfur K-edge spectrum is similar to that of fully reduced glutathione. Simulation of the plasma spectrum indicated 32% thiol and 68% disulfide sulfur. The whole blood spectrum can be simulated by a combination of 46% disulfide and 54% thiol sulfur.
Resumo:
Electrochemical methods have been widely used to monitor physiologically important molecules in biological systems. This report describes the first application of the scanning electrochemical microscope (SECM) to probe the redox activity of individual living cells. The possibilities of measuring the rate and investigating the pathway of transmembrane charge transfer are demonstrated. By this approach, significant differences are detected in the redox responses given by nonmotile, nontransformed human breast epithelial cells, breast cells with a high level of motility (engendered by overexpression of protein kinase Cα), and highly metastatic breast cancer cells. SECM analysis of the three cell lines reveals reproducible differences with respect to the kinetics of charge transfer by several redox mediators.
Resumo:
We have discovered that intracellular redox state appears to be a necessary and sufficient modulator of the balance between self-renewal and differentiation in dividing oligodendrocyte-type-2 astrocyte progenitor cells. The intracellular redox state of freshly isolated progenitors allows prospective isolation of cells with different self-renewal characteristics. Redox state is itself modulated by cell-extrinsic signaling molecules that alter the balance between self-renewal and differentiation: growth factors that promote self-renewal cause progenitors to become more reduced, while signaling molecules that promote differentiation cause progenitors to become more oxidized. Moreover, pharmacological antagonists of the redox effects of these cell-extrinsic signaling molecules antagonize their effects on self-renewal and differentiation, indicating that cell-extrinsic signaling molecules that modulate this balance converge on redox modulation as a critical component of their effector mechanism.
Resumo:
Feedback regulation of photosynthesis by carbon metabolites has long been recognized, but the underlying cellular mechanisms that control this process remain unclear. By using an Arabidopsis cell culture, we show that a block in photosynthetic electron flux prevents the increase in transcript levels of chlorophyll a/b-binding protein and the small subunit of Rubisco that typically occurs when intracellular sugar levels are depleted. In contrast, the expression of the nitrate reductase gene, which is induced by sugars, is not affected. These findings were confirmed in planta by using Arabidopsis carrying the firefly luciferase reporter gene fused to the plastocyanin and chlorophyll a/b-binding protein 2 gene promoters. Transcription from both promoters increases on carbohydrate depletion. Blocking photosynthetic electron transport with 3-(3′, 4′-dichlorophenyl)-1,1′-dimethylurea prevents this increase in transcription. We conclude that plastid-derived redox signaling can override the sugar-regulated expression of nuclear-encoded photosynthetic genes. In the sugar-response mutant, sucrose uncoupled 6 (sun6), plastocyanin-firefly luciferase transcription actually increases in response to exogenous sucrose rather than decreasing as in the wild type. Interestingly, plastid-derived redox signals do not influence this defective pattern of sugar-regulated gene expression in the sun6 mutant. A model, which invokes a positive inducer originating from the photosynthetic electron transport chain, is proposed to explain the nature of the plastid-derived signal.
Resumo:
Most higher plants develop severe toxicity symptoms when grown on ammonium (NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}) as the sole nitrogen source. Recently, NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} toxicity has been implicated as a cause of forest decline and even species extinction. Although mechanisms underlying NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} toxicity have been extensively sought, the primary events conferring it at the cellular level are not understood. Using a high-precision positron tracing technique, we here present a cell-physiological characterization of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} acquisition in two major cereals, barley (Hordeum vulgare), known to be susceptible to toxicity, and rice (Oryza sativa), known for its exceptional tolerance to even high levels of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}. We show that, at high external NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} concentration ([NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}]o), barley root cells experience a breakdown in the regulation of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} influx, leading to the accumulation of excessive amounts of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} in the cytosol. Measurements of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} efflux, combined with a thermodynamic analysis of the transmembrane electrochemical potential for NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}, reveal that, at elevated [NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}]o, barley cells engage a high-capacity NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}-efflux system that supports outward NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} fluxes against a sizable gradient. Ammonium efflux is shown to constitute as much as 80% of primary influx, resulting in a never-before-documented futile cycling of nitrogen across the plasma membrane of root cells. This futile cycling carries a high energetic cost (we record a 40% increase in root respiration) that is independent of N metabolism and is accompanied by a decline in growth. In rice, by contrast, a cellular defense strategy has evolved that is characterized by an energetically neutral, near-Nernstian, equilibration of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} at high [NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}]o. Thus our study has characterized the primary events in NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} nutrition at the cellular level that may constitute the fundamental cause of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} toxicity in plants.