980 resultados para rat (Wistar)
Resumo:
A desnutrição neonatal em ratos resulta em alterações metabólicas e endócrinas nas proles a curto e a longo prazo. Sabe-se que algumas destas alterações, como o conteúdo aumentado de catecolaminas adrenais e a hipercorticosteronemia nos animais adultos estão associadas a alterações comportamentais. Não se sabe, no entanto, se as alterações comportamentais observadas estão presentes desde o insulto original, a desnutrição, ou se estas se desenvolvem ao longo do tempo. Neste sentido, avaliamos em ratos Wistar os efeitos da programação pela restrição protéica materna durante a lactação sobre os parâmetros comportamentais relacionados à ansiedade, à atividade locomotora e à memória/aprendizado em diferentes idades ao longo do desenvolvimento. Ao nascimento das suas proles as progenitoras foram separadas em: Grupo restrição protéica (RP) - que recebeu ração hipoprotéica (8% de proteína) do nascimento ao desmame [dia pós-natal (P) 21], e Grupo CONT (controle) - que recebeu ração normoprotéica neste período. Os seguintes testes comportamentais foram realizados com a prole (21 animais / grupo / idade) em P21, P45, P90 e P180: 1) labirinto em cruz elevado (LCE) - avalia comportamentos associados à ansiedade; 2) campo aberto (CA) - avalia atividade locomotora; 3) labirinto aquático radial de oito braços (LAROB) - avalia memória e aprendizado. Após os testes comportamentais, os animais foram sacrificados por decapitação, o sangue foi coletado para dosagem da corticosterona sérica e a glândula adrenal para quantificação das catecolaminas adrenais. No LCE, os animais RP apresentaram aumentos significativos nas variáveis associadas à ansiedade quando comparado ao grupo CONT somente em P21. No CA foi observada uma redução significativa no número de retângulos percorridos pelo grupo RP somente na idade de P90. No LAROB não identificamos diferenças significativas entre os grupos durante os quatro primeiros dias de teste, independente da idade. No quinto dia de testes (probe trial), o grupo RP mostrou uma diminuição na latência para encontrar a plataforma, em P21 e P180. Quanto à função adrenal, o grupo RP apresentou uma diminuição nos valores de corticosterona sérica em P90, e um aumento no conteúdo de catecolaminas adrenais quando comparado ao grupo CONT em P21 e P180. Nas demais idades analisadas não foram encontradas diferenças significativas entre os grupos. Nossos dados indicam que os animais do grupo RP apresentam: 1) redução do comportamento associado à ansiedade no final do período de lactação; 2) redução da atividade locomotora em adultos jovens; 3) melhora do desempenho de memória e aprendizado no final da lactação e na idade adulta (P180). Adicionalmente, os dados indicam que há uma associação entre alterações nos parâmetros comportamentais e da função adrenal. Podemos concluir que a restrição protéica durante o período de lactação em ratos afeta o comportamento apresentado ao longo da vida e que o padrão temporal dos efeitos varia em função do comportamento estudado.
Resumo:
Acute stressful events enhance plasma corticosterone release and profoundly affect synaptic functions, which are involved in the development of stress-related cognitive and mental disorders. However, how exposure to stressful context immediately after str
Resumo:
The effect of addition of pure chitin from prawn shell, deproteinised prawn shell, demineralized prawn shell and dry prawn shell in casein based control diet on albino rats was studied. The diets contained 0.5% chitin and 10% protein. The results obtained in the studies show that the weight gain and feed conversion were maximum in the control diet. While addition of pure chitin slightly brought down the weight gain, addition of deproteinsed prawn shell have the minimum weight gain showing that presence of minerals adversely affects both feed consumption and weight gain in the case of albino rats. Although it was reported that addition of pure chitin at 0.5% in the commercial feed of broiler chicken gave increased weight, in the case of albino rats the weight gain was slightly reduced compared to control diet.
Resumo:
Ex vivo H-1 NMR spectroscopy was used to measure changes in the concentrations of cerebral metabolites in the prefrontal cortex (PFC) and hippocampus of rats subjected to repeated morphine treatment known to cause tolerance/dependence. The results show th
Resumo:
The aim of this study was to investigate the effect of extremely low-frequency electromagnetic field (ELF-EMF) exposure during morphine treatment on dopamine D2 receptor (D2R) density in the rat dorsal hippocampus following withdrawal. Rats were exposed t
Resumo:
Fea's tree rat (Chiromyscus chiropus) is a very rare species which there are only a few specimens in the world. The chromosomes of two male specimens, collected from Xishuanbanna, Yunnan, are analysed by several banding technique (G-, C-bands, as well as Ag-staining). The diploid chromosome number is 22, and autosomes comprise 5 pairs of metacentrics, 2 pairs of subacrocentrics, and 3 pairs of acrocentrics. The X chromosome is a acrocentric, and Y is a micro-chromosome, almost a point, which could be a marker chromosome of the species and the genus. The centromeric C-bands are very faint, and C-bands of Nos. 1, 2, 9 and Y chromosome are negative. Only one pair Ag-NORs was found on No. 10 in the silver-stained karyotype. The relationship between morphologic and chromosomal features was discussed, and C-banded karyotype evolutionary trend has also been discussed. Moreover, the conventional karyotype of Niviventer confucianus was described.
Resumo:
三七总皂苷(Panax notoginseng saponins,PNS)是从传统中药三七的根中提取的主要有效成分,具有改善血液循环、耐缺氧、改善记忆力、抗衰老等多方面的生理活性.本研究采用"盲法"全细胞膜片钳技术观察PNS对大鼠海马CA1区锥体神经元长时程增强效应(LTP)的影响,以分析其增强学习记忆功能的神经电生理机制.以断头法分离Wistar大鼠(3~4 周)海马半脑,用切片机切出400 μm厚度的海马脑片,以全细胞电压钳制方式记录CA1区锥体细胞的兴奋性突触后电流(EPSCs),给予高频刺激HFS(100 Hz)诱导LTP,分析PNS对大鼠海马CA1区EPSCs和LTP的影响.结果表明,PNS(0.1~0.4 g·L-1)能显著抑制EPSCs(P<0.05),且对海马CA1区LTP无易化作用;但PNS(0.04~0.05 g·L-1)不影响CA1区的EPSCs基础突触传递(P>0.05),却可以增强HFS诱发的LTP(P<0.05).上述结果提示,PNS(0.04~0.05 g·L-1)能易化海马CA1区锥体神经元的长时程增强效应,该作用应是其增进学习记忆力的神经电生理机制.
Resumo:
下载PDF阅读器目的 研究三七总皂苷(Panax notoginseng saponins,PNS)对大鼠海马脑片CA1区锥体神经元兴奋性和抑制性突触传递的作用.方法 断头法分离3~4周雄性Wistar大鼠海马半脑,用切片机切出400μm厚度的海马脑片,对CA1区锥体细胞采用"盲法"全细胞膜片钳技术记录,分别检测和分析PNS(0.05~0.4 g/L)对刺激CA1传人纤维引出的兴奋性突触后电流(EPSCs)和抑制性突触后电流(IPSCs)的影响,继而以脉冲间隔为50 ms的配对刺激代替单刺激,通过EPSC2/EPSC1(P2/P1)值的变化观察PNS对双脉冲易化(paired-pulse facilitation,PPF)的影响.结果 0.1~0.4 g/L PNS显著抑制EPSCs(P<0.05),且PNS在抑制P1、P2的同时明显升高P2/P1值(P<0.05),加强了双脉冲易化,但PNS对IPSCs无显著影响(P>0.05).结论 PNS 显著减小大鼠海马CA1区锥体神经元的EPSCs而不影响IPSCs,说明PNS不是通过强化抑制性中间神经元的功能间接地抑制兴奋性神经元,而是对兴奋性突触传递直接产生抑制;PNS明显升高P2/p1值,说明 PNS是通过突触前机制抑制CA1区兴奋性突触传递.
Resumo:
Experience-dependent long-lasting increases in excitatory synaptic transmission in the hippocampus are believed to underlie certain types of memory(1-3). Whereas stimulation of hippocampal pathways in freely moving rats can readily elicit a long-term potentiation (LTP) of transmission that may last for weeks, previous studies have failed to detect persistent increases in synaptic efficacy after hippocampus-mediated learning(4-6). As changes in synaptic efficacy are contingent on the history of plasticity at the synapses(7), we have examined the effect of experience-dependent hippocampal activation on transmission after the induction of LTP, We show that exploration of a new, non-stressful environment rapidly induces a complete and persistent reversal of the expression of high-frequency stimulation-induced early-phase LTP in the CA1 area of the hippocampus, without affecting baseline transmission in a control pathway. LTP expression is not affected by exploration of familiar environments. We found that spatial exploration affected LTP within a defined time window because neither the induction of LTP nor the maintenance of long-established LTP was blocked. The discovery of a novelty-induced reversal of LTP expression provides strong evidence that extensive long-lasting decreases in synaptic efficacy may act in tandem with enhancements at selected synapses to allow the detection and storage of new information by the hippocampus.
Resumo:
Many ionotropic receptors are modulated by extracellular H+. So far, few studies have directly addressed the role of such modulation at synapses. In the present study, we investigated the effects of changes in extracellular pH on glycinergic miniature inhibitory postsynaptic currents (mIPSCs) as well as glycine-evoked currents (I-Gly) in mechanically dissociated spinal neurons with native synaptic boutons preserved. H+ modulated both the mIPSCs and I-Gly, biphasically, although it activated an amiloride-sensitive inward current by itself. Decreasing extracellular pH reversibly inhibited the amplitude of the mIPSCs and I-Gly, while increasing external pH reversibly potentiated these parameters. Blockade of acid-sensing ion channels (ASICs) with amiloride, the selective antagonist of ASICs, or decreasing intracellular pH did not alter the modulatory effect of H+ on either mIPSCs or I-Gly, H+ shifted the EC50 of the glycine concentration-response curve from 49.3 +/- 5.7 muM at external pH 7.4 to 131.5 +/- 8.1 muM at pH 5.5, without altering the Cl- selectivity of the glycine receptor (GlyR), the Hill coefficient and the maximal I-Gly, suggesting a competitive inhibition of I-Gly by H+. Both Zn2+ and H+ inhibited I-Gly. However, H+ induced no further inhibition of I-Gly in the presence of a saturating concentration of Zn2+. In addition, H+ significantly affected the kinetics of glycinergic mIPSCs and I-Gly. It is proposed that H+ and/or Zn2+ compete with glycine binding and inhibit the amplitude of glycinergic mIPSCs and I-Gly. Moreover, binding of H+ induces a global conformational change in GlyR, which closes the GlyR Cl- channel and results in the acceleration of the seeming desensitization of IGly as well as speeding up the decay time constant of glycinergic mIPSCs. However, the deprotonation rate is faster than the unbinding rate of glycine from the GlyR, leading to reactivation of the undesensitized GlyR after washout of agonist and the appearance of a rebound I-Gly. H+ also modulated the glycine cotransmitter, GABA-activated current (I-GABA). Taken together, the results support a 'conformational coupling' model for H+ modulation of the GlyR and suggest that W may act as a novel modulator for inhibitory neurotransmission in the mammalian spinal cord.
Resumo:
Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. In periphery, they contribute to sensory transmission, including that of nociception and pain. Here we characterized ASIC-like currents in dorsal horn neurons of the rat spinal cord and their functional modulation in pathological conditions. Reverse transcriptase-nested PCR and Western blotting showed that three ASIC isoforms, ASIC1a, ASIC2a, and ASIC2b, are expressed at a high level in dorsal horn neurons. Electrophysiological and pharmacological properties of the proton-gated currents suggest that homomeric ASIC1a and/or heteromeric ASIC1a + 2b channels are responsible for the proton-induced currents in the majority of dorsal horn neurons. Acidification-induced action potentials in these neurons were compatible in a pH-dependent manner with the pH dependence of ASIC-like current. Furthermore, peripheral complete Freund's adjuvant-induced inflammation resulted in increased expression of both ASIC1a and ASIC2a in dorsal horn. These results support the idea that the ASICs of dorsal horn neurons participate in central sensory transmission/modulation under physiological conditions and may play important roles in inflammation-related persistent pain.
Resumo:
The subiculum, which is the primary target of CA1 pyramidal neurons and sending efferent fibres to many brain regions, serves as a hippocampal interface in the neural information processes between hippocampal formation and neocortex. Long-term depression (LTD) is extensively studied in the hippocampus, but not at the CA1-subicular synaptic transmission. Using whole-cell EPSC recordings in the brain slices of young rats, we demonstrated that the pairing protocols of low frequency stimulation (LFS) at 3 Hz and postsynaptic depolarization of -50 mVelicited a reliable LTD in the subiculum. The LTD did not cause the changes of the paired-pulse ratio of EPSC. Furthermore, it did not depend on either NMDA receptors or voltage-gated calcium channels (VGCCs). Bath application of the G-protein coupled muscarinic acetylcholine receptors (mAChRs) antagonists, atropine or scopolamine, blocked the LTD, suggesting that mAChRs are involved in the LTD. It was also completely blocked by either the Ca2+ chelator BAPTA or the G-protein inhibitor GDP-beta-S in the intracellular solution. This type of LTD in the subiculum may play a particular role in the neural information processing between the hippocampus and neocortex. (c) 2005 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Prenatal stress modifies hippocampal synaptic plasticity and spatial learning in young rat offspring
Resumo:
Clinical studies demonstrate that prenatal stress causes cognitive deficits and increases vulnerability to affective disorders in children and adolescents. The underlying mechanisms are not yet fully understood. Here, we reported that prenatal stress (10
Resumo:
Chronic exposure to morphine can induce drug addiction and neural injury, but the exact mechanism is not fully understood. Here we show that morphine induces autophagy in neuroblastoma SH-SY5Y cells and in the rat hippocampus. Pharmacological approach shows that this effect appears to be mediated by PTX-sensitive G protein-coupled receptors signaling cascade. Morphine increases Beclin 1 expression and reduces the interaction between Beclin 1 and Bcl-2, thus releasing Beclin 1 for its pro-autophagic activity. Bcl-2 overexpression inhibits morphine-induced autophagy, whereas knockdown of Beclin 1 or knockout of ATG5 prevents morphine-induced autophagy. In addition, chronic treatment with morphine induces cell death, which is increased by autophagy inhibition through Beclin 1 RNAi. Our data are the first to reveal that Beclin 1 and ATG5 play key roles in morphine-induced autophagy, which may contribute to morphine-induced neuronal injury.
Resumo:
The formation of memory is believed to depend on experience- or activity-dependent synaptic plasticity, which is exquisitely sensitive to psychological stress since inescapable stress impairs long-term potentiation (LTP) but facilitates long-term depression (LTD). Our recent studies demonstrated that 4 days of opioid withdrawal enables maximal extents of both hippocampal LTP and drug-reinforced behavior; while elevated-platform stress enables these phenomena at 18 h of opioid withdrawal. Here, we examined the effects of low dose of morphine (0.5 mg kg(-1), i.p.) or the opioid receptor antagonist naloxone (1 mg kg(-1), i.p.) on synaptic efficacy in the hippocampal CA1 region of anesthetized rats. A form of synaptic depression was induced by low dose of morphine or naloxone in rats after 18 h but not 4 days of opioid withdrawal. This synaptic depression was dependent on both N-methyl-D-aspartate receptor and synaptic activity, similar to the hippocampal long-term depression induced by low frequency stimulation. Elevated-platform stress given 2 h before experiment prevented the synaptic depression at 18 h of opioid withdrawal; in contrast, the glucocorticoid receptor (GR) antagonist RU38486 treatment (20 mg kg(-1), s.c., twice per day for first 3 days of withdrawal), or a high dose of morphine reexposure (15 mg kg(-1), s.c., 12 h before experiment), enabled the synaptic depression on 4 days of opioid withdrawal. This temporal shift of synaptic depression by stress or GR blockade supplements our previous findings of potentially correlated temporal shifts of LTP induction and drug-reinforced behavior during opioid withdrawal. Our results therefore support the idea that stress experience during opioid withdrawal may modify hippocampal synaptic plasticity and play important roles in drug-associated memory. (C) 2009 Wiley-Liss, Inc.