980 resultados para problem complexity
Resumo:
Motivated by the idea of designing a structure for a desired mode shape, intended towards applications such as resonant sensors, actuators and vibration confinement, we present the inverse mode shape problem for bars, beams and plates in this work. The objective is to determine the cross-sectional profile of these structures, given a mode shape, boundary condition and the mass. The contribution of this article is twofold: (i) A numerical method to solve this problem when a valid mode shape is provided in the finite element framework for both linear and nonlinear versions of the problem. (ii) An analytical result to prove the uniqueness and existence of the solution in the case of bars. This article also highlights a very important question of the validity of a mode shape for any structure of given boundary conditions.
Resumo:
For an n(t) transmit, nr receive antenna (n(t) x n(r)) MIMO system with quasi- static Rayleigh fading, it was shown by Elia et al. that space-time block code-schemes (STBC-schemes) which have the non-vanishing determinant (NVD) property and are based on minimal-delay STBCs (STBC block length equals n(t)) with a symbol rate of n(t) complex symbols per channel use (rate-n(t) STBC) are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r). Further, explicit linear STBC-schemes (LSTBC-schemes) with the NVD property were also constructed. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of the Alamouti code-scheme for the 2 x 1 system and rate-1, diagonal STBC-schemes with NVD for an nt x 1 system, no known minimal-delay, rate-n(r) LSTBC-scheme has been shown to be DMT-optimal. In this paper, we first obtain an enhanced sufficient criterion for an STBC-scheme to be DMT optimal and using this result, we show that for certain asymmetric MIMO systems, many well-known LSTBC-schemes which have low ML-decoding complexity are DMT-optimal, a fact that was unknown hitherto.
Resumo:
We consider a visual search problem studied by Sripati and Olson where the objective is to identify an oddball image embedded among multiple distractor images as quickly as possible. We model this visual search task as an active sequential hypothesis testing problem (ASHT problem). Chernoff in 1959 proposed a policy in which the expected delay to decision is asymptotically optimal. The asymptotics is under vanishing error probabilities. We first prove a stronger property on the moments of the delay until a decision, under the same asymptotics. Applying the result to the visual search problem, we then propose a ``neuronal metric'' on the measured neuronal responses that captures the discriminability between images. From empirical study we obtain a remarkable correlation (r = 0.90) between the proposed neuronal metric and speed of discrimination between the images. Although this correlation is lower than with the L-1 metric used by Sripati and Olson, this metric has the advantage of being firmly grounded in formal decision theory.
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].
Resumo:
The advent and evolution of geohazard warning systems is a very interesting study. The two broad fields that are immediately visible are that of geohazard evaluation and subsequent warning dissemination. Evidently, the latter field lacks any systematic study or standards. Arbitrarily organized and vague data and information on warning techniques create confusion and indecision. The purpose of this review is to try and systematize the available bulk of information on warning systems so that meaningful insights can be derived through decidable flowcharts, and a developmental process can be undertaken. Hence, the methods and technologies for numerous geohazard warning systems have been assessed by putting them into suitable categories for better understanding of possible ways to analyze their efficacy as well as shortcomings. By establishing a classification scheme based on extent, control, time period, and advancements in technology, the geohazard warning systems available in any literature could be comprehensively analyzed and evaluated. Although major advancements have taken place in geohazard warning systems in recent times, they have been lacking a complete purpose. Some systems just assess the hazard and wait for other means to communicate, and some are designed only for communication and wait for the hazard information to be provided, which usually is after the mishap. Primarily, systems are left at the mercy of administrators and service providers and are not in real time. An integrated hazard evaluation and warning dissemination system could solve this problem. Warning systems have also suffered from complexity of nature, requirement of expert-level monitoring, extensive and dedicated infrastructural setups, and so on. The user community, which would greatly appreciate having a convenient, fast, and generalized warning methodology, is surveyed in this review. The review concludes with the future scope of research in the field of hazard warning systems and some suggestions for developing an efficient mechanism toward the development of an automated integrated geohazard warning system. DOI: 10.1061/(ASCE)NH.1527-6996.0000078. (C) 2012 American Society of Civil Engineers.
Resumo:
A low complexity, essentially-ML decoding technique for the Golden code and the three antenna Perfect code was introduced by Sirianunpiboon, Howard and Calderbank. Though no theoretical analysis of the decoder was given, the simulations showed that this decoding technique has almost maximum-likelihood (ML) performance. Inspired by this technique, in this paper we introduce two new low complexity decoders for Space-Time Block Codes (STBCs)-the Adaptive Conditional Zero-Forcing (ACZF) decoder and the ACZF decoder with successive interference cancellation (ACZF-SIC), which include as a special case the decoding technique of Sirianunpiboon et al. We show that both ACZF and ACZF-SIC decoders are capable of achieving full-diversity, and we give a set of sufficient conditions for an STBC to give full-diversity with these decoders. We then show that the Golden code, the three and four antenna Perfect codes, the three antenna Threaded Algebraic Space-Time code and the four antenna rate 2 code of Srinath and Rajan are all full-diversity ACZF/ACZF-SIC decodable with complexity strictly less than that of their ML decoders. Simulations show that the proposed decoding method performs identical to ML decoding for all these five codes. These STBCs along with the proposed decoding algorithm have the least decoding complexity and best error performance among all known codes for transmit antennas. We further provide a lower bound on the complexity of full-diversity ACZF/ACZF-SIC decoding. All the five codes listed above achieve this lower bound and hence are optimal in terms of minimizing the ACZF/ACZF-SIC decoding complexity. Both ACZF and ACZF-SIC decoders are amenable to sphere decoding implementation.
Resumo:
Border basis detection (BBD) is described as follows: given a set of generators of an ideal, decide whether that set of generators is a border basis of the ideal with respect to some order ideal. The motivation for this problem comes from a similar problem related to Grobner bases termed as Grobner basis detection (GBD) which was proposed by Gritzmann and Sturmfels (1993). GBD was shown to be NP-hard by Sturmfels and Wiegelmann (1996). In this paper, we investigate the computational complexity of BBD and show that it is NP-complete.
Resumo:
The n-interior point variant of the Erdos-Szekeres problem is to show the following: For any n, n-1, every point set in the plane with sufficient number of interior points contains a convex polygon containing exactly n-interior points. This has been proved only for n-3. In this paper, we prove it for pointsets having atmost logarithmic number of convex layers. We also show that any pointset containing atleast n interior points, there exists a 2-convex polygon that contains exactly n-interior points.
Resumo:
Boxicity of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional axis parallel boxes in Rk. Equivalently, it is the minimum number of interval graphs on the vertex set V such that the intersection of their edge sets is E. It is known that boxicity cannot be approximated even for graph classes like bipartite, co-bipartite and split graphs below O(n0.5-ε)-factor, for any ε > 0 in polynomial time unless NP = ZPP. Till date, there is no well known graph class of unbounded boxicity for which even an nε-factor approximation algorithm for computing boxicity is known, for any ε < 1. In this paper, we study the boxicity problem on Circular Arc graphs - intersection graphs of arcs of a circle. We give a (2+ 1/k)-factor polynomial time approximation algorithm for computing the boxicity of any circular arc graph along with a corresponding box representation, where k ≥ 1 is its boxicity. For Normal Circular Arc(NCA) graphs, with an NCA model given, this can be improved to an additive 2-factor approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity is O(mn+n2) in both these cases and in O(mn+kn2) which is at most O(n3) time we also get their corresponding box representations, where n is the number of vertices of the graph and m is its number of edges. The additive 2-factor algorithm directly works for any Proper Circular Arc graph, since computing an NCA model for it can be done in polynomial time.
Resumo:
Time series classification deals with the problem of classification of data that is multivariate in nature. This means that one or more of the attributes is in the form of a sequence. The notion of similarity or distance, used in time series data, is significant and affects the accuracy, time, and space complexity of the classification algorithm. There exist numerous similarity measures for time series data, but each of them has its own disadvantages. Instead of relying upon a single similarity measure, our aim is to find the near optimal solution to the classification problem by combining different similarity measures. In this work, we use genetic algorithms to combine the similarity measures so as to get the best performance. The weightage given to different similarity measures evolves over a number of generations so as to get the best combination. We test our approach on a number of benchmark time series datasets and present promising results.
Resumo:
Since the days of Digital Subscriber Links(DSL), Time Domain Equalizers(TEQ's) have been used to combat time dispersive channels in Multicarrier Systems. In this paper, we propose computationally inexpensive techniques to recompute TEQ weights in the presence of changes in the channel, especially over fast fading channels. The techniques use no extra information except the perturbation itself, and provide excellent approximations to the new TEQ weights. The proposed adaptation techniques are shown to perform admirably well for small changes in channels for OFDM systems.
Resumo:
Erasure codes are an efficient means of storing data across a network in comparison to data replication, as they tend to reduce the amount of data stored in the network and offer increased resilience in the presence of node failures. The codes perform poorly though, when repair of a failed node is called for, as they typically require the entire file to be downloaded to repair a failed node. A new class of erasure codes, termed as regenerating codes were recently introduced, that do much better in this respect. However, given the variety of efficient erasure codes available in the literature, there is considerable interest in the construction of coding schemes that would enable traditional erasure codes to be used, while retaining the feature that only a fraction of the data need be downloaded for node repair. In this paper, we present a simple, yet powerful, framework that does precisely this. Under this framework, the nodes are partitioned into two types and encoded using two codes in a manner that reduces the problem of node-repair to that of erasure-decoding of the constituent codes. Depending upon the choice of the two codes, the framework can be used to avail one or more of the following advantages: simultaneous minimization of storage space and repair-bandwidth, low complexity of operation, fewer disk reads at helper nodes during repair, and error detection and correction.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) has been recently studied by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain a best ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
Erasure codes are an efficient means of storing data across a network in comparison to data replication, as they tend to reduce the amount of data stored in the network and offer increased resilience in the presence of node failures. The codes perform poorly though, when repair of a failed node is called for, as they typically require the entire file to be downloaded to repair a failed node. A new class of erasure codes, termed as regenerating codes were recently introduced, that do much better in this respect. However, given the variety of efficient erasure codes available in the literature, there is considerable interest in the construction of coding schemes that would enable traditional erasure codes to be used, while retaining the feature that only a fraction of the data need be downloaded for node repair. In this paper, we present a simple, yet powerful, framework that does precisely this. Under this framework, the nodes are partitioned into two types and encoded using two codes in a manner that reduces the problem of node-repair to that of erasure-decoding of the constituent codes. Depending upon the choice of the two codes, the framework can be used to avail one or more of the following advantages: simultaneous minimization of storage space and repair-bandwidth, low complexity of operation, fewer disk reads at helper nodes during repair, and error detection and correction.
Resumo:
Low-complexity near-optimal detection of signals in MIMO systems with large number (tens) of antennas is getting increased attention. In this paper, first, we propose a variant of Markov chain Monte Carlo (MCMC) algorithm which i) alleviates the stalling problem encountered in conventional MCMC algorithm at high SNRs, and ii) achieves near-optimal performance for large number of antennas (e.g., 16×16, 32×32, 64×64 MIMO) with 4-QAM. We call this proposed algorithm as randomized MCMC (R-MCMC) algorithm. Second, we propose an other algorithm based on a random selection approach to choose candidate vectors to be tested in a local neighborhood search. This algorithm, which we call as randomized search (RS) algorithm, also achieves near-optimal performance for large number of antennas with 4-QAM. The complexities of the proposed R-MCMC and RS algorithms are quadratic/sub-quadratic in number of transmit antennas, which are attractive for detection in large-MIMO systems. We also propose message passing aided R-MCMC and RS algorithms, which are shown to perform well for higher-order QAM.