886 resultados para preparation and synthetic applications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkali tantalates and niobates, including K(Ta / Nb)O3, Li(Ta / Nb)O3 and Na(Ta / Nb)O3, are a very promising ferroic family of lead-free compounds with perovskite-like structures. Their versatile properties make them potentially interesting for current and future application in microelectronics, photocatalysis, energy and biomedics. Among them potassium tantalate, KTaO3 (KTO), has been raising interest as an alternative for the well-known strontium titanate, SrTiO3 (STO). KTO is a perovskite oxide with a quantum paraelectric behaviour when electrically stimulated and a highly polarizable lattice, giving opportunity to tailor its properties via external or internal stimuli. However problems related with the fabrication of either bulk or 2D nanostructures makes KTO not yet a viable alternative to STO. Within this context and to contribute scientifically to the leverage tantalate based compounds applications, the main goals of this thesis are: i) to produce and characterise thin films of alkali tantalates by chemical solution deposition on rigid Si based substrates, at reduced temperatures to be compatible with Si technology, ii) to fulfil scientific knowledge gaps in these relevant functional materials related to their energetics and ii) to exploit alternative applications for alkali tantalates, as photocatalysis. In what concerns the synthesis attention was given to the understanding of the phase formation in potassium tantalate synthesized via distinct routes, to control the crystallization of desired perovskite structure and to avoid low temperature pyrochlore or K-deficient phases. The phase formation process in alkali tantalates is far from being deeply analysed, as in the case of Pb-containing perovskites, therefore the work was initially focused on the process-phase relationship to identify the driving forces responsible to regulate the synthesis. Comparison of phase formation paths in conventional solid-state reaction and sol-gel method was conducted. The structural analyses revealed that intermediate pyrochlore K2Ta2O6 structure is not formed at any stage of the reaction using conventional solid-state reaction. On the other hand in the solution based processes, as alkoxide-based route, the crystallization of the perovskite occurs through the intermediate pyrochlore phase; at low temperatures pyrochlore is dominant and it is transformed to perovskite at >800 °C. The kinetic analysis carried out by using Johnson-MehlAvrami-Kolmogorow model and quantitative X-ray diffraction (XRD) demonstrated that in sol-gel derived powders the crystallization occurs in two stages: i) at early stage of the reaction dominated by primary nucleation, the mechanism is phase-boundary controlled, and ii) at the second stage the low value of Avrami exponent, n ~ 0.3, does not follow any reported category, thus not permitting an easy identification of the mechanism. Then, in collaboration with Prof. Alexandra Navrotsky group from the University of California at Davis (USA), thermodynamic studies were conducted, using high temperature oxide melt solution calorimetry. The enthalpies of formation of three structures: pyrochlore, perovskite and tetragonal tungsten bronze K6Ta10.8O30 (TTB) were calculated. The enthalpies of formation from corresponding oxides, ∆Hfox, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -203.63 ± 2.84 kJ/mol, - 358.02 ± 3.74 kJ/mol, and -1252.34 ± 10.10 kJ/mol, respectively, whereas from elements, ∆Hfel, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -1408.96 ± 3.73 kJ/mol, -2790.82 ± 6.06 kJ/mol, and -13393.04 ± 31.15 kJ/mol, respectively. The possible decomposition reactions of K-deficient KTa2.2O6 pyrochlore to KTaO3 perovskite and Ta2O5 (reaction 1) or to TTB K6Ta10.8O30 and Ta2O5 (reaction 2) were proposed, and the enthalpies were calculated to be 308.79 ± 4.41 kJ/mol and 895.79 ± 8.64 kJ/mol for reaction 1 and reaction 2, respectively. The reactions are strongly endothermic, indicating that these decompositions are energetically unfavourable, since it is unlikely that any entropy term could override such a large positive enthalpy. The energetic studies prove that pyrochlore is energetically more stable phase than perovskite at low temperature. Thus, the local order of the amorphous precipitates drives the crystallization into the most favourable structure that is the pyrochlore one with similar local organization; the distance between nearest neighbours in the amorphous or short-range ordered phase is very close to that in pyrochlore. Taking into account the stoichiometric deviation in KTO system, the selection of the most appropriate fabrication / deposition technique in thin films technology is a key issue, especially concerning complex ferroelectric oxides. Chemical solution deposition has been widely reported as a processing method to growth KTO thin films, but classical alkoxide route allows to crystallize perovskite phase at temperatures >800 °C, while the temperature endurance of platinized Si wafers is ~700 °C. Therefore, alternative diol-based routes, with distinct potassium carboxylate precursors, was developed aiming to stabilize the precursor solution, to avoid using toxic solvents and to decrease the crystallization temperature of the perovskite phase. Studies on powders revealed that in the case of KTOac (solution based on potassium acetate), a mixture of perovskite and pyrochlore phases is detected at temperature as low as 450 °C, and gradual transformation into monophasic perovskite structure occurs as temperature increases up to 750 °C, however the desired monophasic KTaO3 perovskite phase is not achieved. In the case of KTOacac (solution with potassium acetylacetonate), a broad peak is detected at temperatures <650 °C, characteristic of amorphous structures, while at higher temperatures diffraction lines from pyrochlore and perovskite phases are visible and a monophasic perovskite KTaO3 is formed at >700 °C. Infrared analysis indicated that the differences are due to a strong deformation of the carbonate-based structures upon heating. A series of thin films of alkali tantalates were spin-coated onto Si-based substrates using diol-based routes. Interestingly, monophasic perovskite KTaO3 films deposited using KTOacac solution were obtained at temperature as low as 650 °C; films were annealed in rapid thermal furnace in oxygen atmosphere for 5 min with heating rate 30 °C/sec. Other compositions of the tantalum based system as LiTaO3 (LTO) and NaTaO3 (NTO), were successfully derived as well, onto Si substrates at 650 °C as well. The ferroelectric character of LTO at room temperature was proved. Some of dielectric properties of KTO could not be measured in parallel capacitor configuration due to either substrate-film or filmelectrode interfaces. Thus, further studies have to be conducted to overcome this issue. Application-oriented studies have also been conducted; two case studies: i) photocatalytic activity of alkali tantalates and niobates for decomposition of pollutant, and ii) bioactivity of alkali tantalate ferroelectric films as functional coatings for bone regeneration. Much attention has been recently paid to develop new type of photocatalytic materials, and tantalum and niobium oxide based compositions have demonstrated to be active photocatalysts for water splitting due to high potential of the conduction bands. Thus, various powders of alkali tantalates and niobates families were tested as catalysts for methylene blue degradation. Results showed promising activities for some of the tested compounds, and KNbO3 is the most active among them, reaching over 50 % degradation of the dye after 7 h under UVA exposure. However further modifications of powders can improve the performance. In the context of bone regeneration, it is important to have platforms that with appropriate stimuli can support the attachment and direct the growth, proliferation and differentiation of the cells. In lieu of this here we exploited an alternative strategy for bone implants or repairs, based on charged mediating signals for bone regeneration. This strategy includes coating metallic 316L-type stainless steel (316L-SST) substrates with charged, functionalized via electrical charging or UV-light irradiation, ferroelectric LiTaO3 layers. It was demonstrated that the formation of surface calcium phosphates and protein adsorption is considerably enhanced for 316L-SST functionalized ferroelectric coatings. Our approach can be viewed as a set of guidelines for the development of platforms electrically functionalized that can stimulate tissue regeneration promoting direct integration of the implant in the host tissue by bone ingrowth and, hence contributing ultimately to reduce implant failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncovering mechanisms of unknown pathological mechanisms and body response to applied medication are the drive forces toward personalized medicine. In this post-genomic era, all eyes are tuned to proteomic field, searching for the answers and explanations by investigating the final physiological functional units – proteins and their proteoforms. Development of cutting-edge mass spectrometric technologies and powerful bioinformatics tools, allowed life-science community mining of disease-specific proteins as biomarkers, which are often hidden by high complexity of the samples and/or small abundance. Nowadays, there are several proteomics-based approaches to study the proteome. This chapter focuses on gold standard proteomics strategies and related issues towards candidate biomarker discovery, which may have diagnostic/prognostic as well as mechanistic utility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kafirin microparticles have been proposed as an oral nutraceutical and drug delivery system. This study investigates microparticles formed with kafirin extracted from white and raw versus cooked red sorghum grains as an oral delivery system. Targeted delivery to the colon would be beneficial for medication such as prednisolone, which is used in the management of inflammatory bowel disease. Therefore, prednisolone was loaded into microparticles of kafirin from the different sources using phase separation. Differences were observed in the protein content, in vitro protein digestibility, and protein electrophoretic profile of the various sources of sorghum grains, kafirin extracts, and kafirin microparticles. For all of the formulations, the majority of the loaded prednisolone was not released in in vitro conditions simulating the upper gastrointestinal tract, indicating that most of the encapsulated drug could reach the target area of the lower gastrointestinal tract. This suggests that these kafirin microparticles may have potential as a colon-targeted nutraceutical and drug delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the study of Bull's eye antenna designs, a type of leaky wave antenna (LWA), operating in the 60 GHz band. This band emerged as a new standard for specific terrestrial and space applications because the radio spectrumbecomes more congested up to the millimetre-wave band, starting at 30 GHz. Built on existing Bull's eye antenna designs, novel structures were simulated, fabricated and measured, so as to provide more exibility in the implementation of wireless solutions at this frequency. Firstly, the study of a 60 GHz Bull's eye antenna for straightforward integration onto a CubeSat is presented. An investigation of the design is carried out, from the description of the radiation mechanism supported by simulation results, to the radiation pattern measurement of a prototype which provides a gain of 19.1 dBi at boresight. Another design, based on a modified feed structure, uses a microstrip to waveguide transition to provide easier and inexpensive integration of a Bull's eye antenna onto a planar circuit. Secondly, the design of Bull's eye antennas capable of creating beam deflection and multi-beam is presented. In particular, a detail study of the deflection mechanism is proposed, followed by the demonstration of a Bull's eye antenna generating two separate beams at ±16° away from the boresight. In addition, a novel mechanically steerable Bull's eye antenna, based on the division of the corrugated area in paired sectors is presented. A prototype was fabricated and measured. It generated double beams at ±8° and ±15° from the boresight, and a single boresight beam. Thirdly, a Bull's eye antenna capable of generating two simultaneous orbital angular momentum (OAM) modes l = 3 is proposed. The design is based on a circular travelling wave resonator and would allow channel capacity increase through OAM multiplexing. An improved design based on two stacked OAM Bull's eye antennas capable of producing four orthogonal OAM modes l = (±3,±13) simultaneously is presented. A novel receiving scheme based on discretely sampled partial aperture receivers (DSPAR) is then introduced. This solution could provide a lower windage and a lower cost of implementation than current whole or partial continuous aperture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and administration of medications is one of the most common and relevant functions of nurses, demanding great responsibility. Incorrect administration of medication, currently constitutes a serious problem in health services, and is considered one of the main adverse effects suffered by hospitalized patients. Objectives: Identify the major errors in the preparation and administration of medication by nurses in hospitals and know what factors lead to the error occurred in the preparation and administration of medication. Methods: A systematic review of the literature. Deined as inclusion criteria: original scientiic papers, complete, published in the period 2011 to May 2016, the SciELO and LILACS databases, performed in a hospital environment, addressing errors in preparation and administration of medication by nurses and in Portuguese language. After application of the inclusion criteria obtained a sample of 7 articles. Results: The main errors identiied in the pr eparation and administration of medication were wrong dose 71.4%, wrong time 71.4%, 57.2% dilution inadequate, incorrect selection of the patient 42.8% and 42.8% via inadequate. The factors that were most commonly reported by the nursing staff, as the cause of the error was the lack of human appeal 57.2%, inappropriate locations for the preparation of medication 57.2%, the presence of noise and low brightness in preparation location 57, 2%, professionals untrained 42.8%, fatigue and stress 42.8% and inattention 42.8%. Conclusions: The literature shows a high error rate in the preparation and administration of medication for various reasons, making it important that preventive measures of this occurrence are implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thematization is recognized as a fundamental phenomenon in the construction of messages and texts by di erent linguistic schools. This location within a text privileges the elements that guide the reader in the orientation and interpretation of discourse at di erent levels. Thematizing a linguistic unit by locating it in the rst-initial position of a clause, paragraph, or text, confers upon it a special status: a signal of the organizational strategy which characterizes di erent text types playing a role as a variable in the distinction of registers, text types and genres. However, in spite of the importance of the study of thematization for message and textual structuring, to date there are no linguistic studies that have undertook the task of validating its aspects in a comparative manner, either for linguistic or computational purposes. This study, therefore, lls a research gap by implementing a methodology based on contrastive corpus annotation, which allows to empirically validate aspects of the phenomenon of Thematization in English and Spanish, it also seeks to develop a bilingual English-Spanish comparable corpus of newspaper texts automatically annotated with thematic features at clausal and discourse levels. The empirically validated categories (Thematic Field and its elements: Textual Theme, Interpersonal Theme, PreHead and Head) are used to annotate a larger corpus of three newspaper genres news reports, editorials and letters to the editor in terms of thematic choices. This characterization, reveals interesting results, such as the use of genre-speci c strategies in thematic position. In addition, the thesis investigates the possibility to automate the annotation of thematic features in the bilingual corpus through the development of a set of JAVA rules implemented in GATE. It also shows the e cacy of this method in comparison with the manual annotation results...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressed covariance sensing using quadratic samplers is gaining increasing interest in recent literature. Covariance matrix often plays the role of a sufficient statistic in many signal and information processing tasks. However, owing to the large dimension of the data, it may become necessary to obtain a compressed sketch of the high dimensional covariance matrix to reduce the associated storage and communication costs. Nested sampling has been proposed in the past as an efficient sub-Nyquist sampling strategy that enables perfect reconstruction of the autocorrelation sequence of Wide-Sense Stationary (WSS) signals, as though it was sampled at the Nyquist rate. The key idea behind nested sampling is to exploit properties of the difference set that naturally arises in quadratic measurement model associated with covariance compression. In this thesis, we will focus on developing novel versions of nested sampling for low rank Toeplitz covariance estimation, and phase retrieval, where the latter problem finds many applications in high resolution optical imaging, X-ray crystallography and molecular imaging. The problem of low rank compressive Toeplitz covariance estimation is first shown to be fundamentally related to that of line spectrum recovery. In absence if noise, this connection can be exploited to develop a particular kind of sampler called the Generalized Nested Sampler (GNS), that can achieve optimal compression rates. In presence of bounded noise, we develop a regularization-free algorithm that provably leads to stable recovery of the high dimensional Toeplitz matrix from its order-wise minimal sketch acquired using a GNS. Contrary to existing TV-norm and nuclear norm based reconstruction algorithms, our technique does not use any tuning parameters, which can be of great practical value. The idea of nested sampling idea also finds a surprising use in the problem of phase retrieval, which has been of great interest in recent times for its convex formulation via PhaseLift, By using another modified version of nested sampling, namely the Partial Nested Fourier Sampler (PNFS), we show that with probability one, it is possible to achieve a certain conjectured lower bound on the necessary measurement size. Moreover, for sparse data, an l1 minimization based algorithm is proposed that can lead to stable phase retrieval using order-wise minimal number of measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To improve the effectiveness and reduce the systemic side effects of methylprednisolone in traumatic spinal injuries, its polymeric implants were prepared using chitosan and sodium alginate as the biocompatible polymers. Methods: Implants of methylprednisolone sodium succinate (MPSS) were prepared by molding the drug-loaded polymeric mass obtained after ionotropic gelation method. The prepared implants were evaluated for drug loading, in vitro drug release and in vivo performance in traumatic spinal-injury rat model with paraplegia. Results: All the implant formulations were light pale solid matrix with smooth texture. Implants showed 86.56 ± 2.07 % drug loading. Drug release was 89.29 ± 1.25 % at the end of 7 days. Motor function was evaluated in traumatic spinal injury-induced rats in terms of its movement on the horizontal bar. At the end of 7 days, the test group showed the activity score (4.75 ± 0.02) slightly higher than that of standard (4.62 ± 0.25), but the difference was not statistically different (p > 0.05). Conclusion: MPSS-loaded implants produces good recovery in traumatic spinal-injury rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to achieve superhydrophpbicity, indicating their potential in a broad range of applications. The versatile and generic nature of the HVEPD process has been demonstrated by achieving deposition on flexible and transparent substrates, as well as aligned forests of manganese dioxide (MnO2) nanorods. A continuous roll-printing HVEPD approach was then developed to obtain aligned MWCNT forest with low contact resistance on large, flexible substrates. Such large-scale electrodes showed no deterioration in electrochemical performance and paved the way for practical device fabrication. The effect of a holding layer on the contact resistance between aligned MWCNT forests and the substrate was studied to improve electrochemical performance of such electrodes. It was found that a suitable precursor salt like nickel chloride could be used to achieve a conductive holding layer which helped to significantly reduce the contact resistance. This in turn enhanced the electrochemical performance of the electrodes. High-power scalable redox capacitors were then prepared using HVEPD. Very high power/energy densities and excellent cyclability have been achieved by synergistically combining hydrothermally synthesized, highly crystalline α-MnO2 nanorods, vertically aligned forests and reduced contact resistance. To further improve the performance, hybrid electrodes have been prepared in the form of vertically aligned forest of MWCNTs with branches of α-MnO2 nanorods on them. Large- scale electrodes with such hybrid structures were manufactured using continuous HVEPD and characterized, showing further improved power and energy densities. The alignment quality and density of MWCNT forests were also improved by using an AC/DC pulsed deposition technique. In this case, AC voltage was first used to align the MWCNTs, followed by immediate DC voltage to deposit the aligned MWCNTs along with the conductive holding layer. Decoupling of alignment from deposition was proven to result in better alignment quality and higher electrochemical performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein purification plays a crucial role in biotechnology and biomanufacturing, where downstream unit operations account for 40%-80% of the overall costs. To overcome this issue, companies strive to simplify the separation process by reducing the number of steps and replacing expensive separation devices. In this context, commercially available polybutylene terephthalate (PBT) melt-blown nonwoven membranes have been developed as a novel disposable membrane chromatography support. The PBT nonwoven membrane is able to capture products and reduce contaminants by ion exchange chromatography. The PBT nonwoven membrane was modified by grafting a poly(glycidyl methacrylate) (GMA) layer by either photo-induced graft polymerization or heat induced graft polymerization. The epoxy groups of GMA monomer were subsequently converted into cation and anion exchangers by reaction with either sulfonic acid groups or diethylamine (DEA), respectively. Several parameters of the procedure were studied, especially the effect of (i) % weight gain and (ii) ligand density on the static protein binding capacity. Bovine Serum Albumin (BSA) and human Immunoglobulin G (hIgG) were utilized as model proteins in the anion and cation exchange studies. The performance of ion exchange PBT nonwovens by HIG was evaluated under flow conditions. The anion- and cation- exchange HIG PBT nonwovens were evaluated for their ability to selectively adsorb and elute BSA or hIgG from a mixture of proteins. Cation exchange nonwovens were not able to reach a good protein separation, whereas anion exchange HIG nonwovens were able to absorb and elute BSA with very high value of purity and yield, in only one step of purification.