920 resultados para power systems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A constructive heuristic algorithm (CHA) to solve distribution system planning (DSP) problem is presented. The DSP is a very complex mixed binary nonlinear programming problem. A CHA is aimed at obtaining an excellent quality solution for the DSP problem. However, a local improvement phase and a branching technique were implemented in the CHA to improve its solution. In each step of the CHA, a sensitivity index is used to add a circuit or a substation to the distribution system. This sensitivity index is obtained by solving the DSP problem considering the numbers of circuits and substations to be added as continuous variables (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an efficient nonlinear optimization solver. Results of two tests systems and one real distribution system are presented in this paper in order to show the ability of the proposed algorithm.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A combinatorial mathematical model in tandem with a metaheuristic technique for solving transmission network expansion planning (TNEP) using an AC model associated with reactive power planning (RPP) is presented in this paper. AC-TNEP is handled through a prior DC model while additional lines as well as VAr-plants are used as reinforcements to cope with real network requirements. The solution of the reinforcement stage can be obtained by assuming all reactive demands are supplied locally to achieve a solution for AC-TNEP and by neglecting the local reactive sources, a reactive power planning (RPP) will be managed to find the minimum required reactive power sources. Binary GA as well as a real genetic algorithm (RCA) are employed as metaheuristic optimization techniques for solving this combinatorial TNEP as well as the RPP problem. High quality results related with lower investment costs through case studies on test systems show the usefulness of the proposal when working directly with the AC model in transmission network expansion planning, instead of relaxed models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present a bilevel model for transmission expansion planning within a market environment, where producers and consumers trade freely electric energy through a pool. The target of the transmission planner, modeled through the upper-level problem, is to minimize network investment cost while facilitating energy trading. This upper-level problem is constrained by a collection of lower-level market clearing problems representing pool trading, and whose individual objective functions correspond to social welfare. Using the duality theory the proposed bilevel model is recast as a mixed-integer linear programming problem, which is solvable using branch-and-cut solvers. Detailed results from an illustrative example and a case study are presented and discussed. Finally, some relevant conclusions are drawn.
Resumo:
Single real transformation matrices are tested as phase-mode transformation matrices of typical symmetrical systems with double three-phase and two parallel double three-phase transmission lines. These single real transformation matrices are achieved from eigenvector matrices of the mentioned systems and they are based on Clarke's matrix. Using linear combinations of the Clarke's matrix elements, the techniques applied to the single three-phase lines are extended to systems with 6 or 12 phase conductors. For transposed double three-phase lines, phase Z and Y matrices are changed into diagonal matrices in mode domain. Considering non-transposed cases of double three-phase lines, the results are not exact and the error analyses are performed using the exact eigenvalues. In case of two parallel double three-phase lines, the exact single real transformation matrix has not been obtained yet. Searching for this exact matrix, the analyses are based on a single homopolar reference. For all analyses in this paper, the homopolar mode is used as the only homopolar reference for all phase conductors of the studied system. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper an artificial neural network (ANN) based methodology is proposed for (a) solving the basic load flow, (b) solving the load flow considering the reactive power limits of generation (PV) buses, (c) determining a good quality load flow starting point for ill-conditioned systems, and (d) computing static external equivalent circuits. An analysis of the input data required as well as the ANN architecture is presented. A multilayer perceptron trained with the Levenberg-Marquardt second order method is used. The proposed methodology was tested with the IEEE 30- and 57-bus, and an ill-conditioned 11-bus system. Normal operating conditions (base case) and several contingency situations including different load and generation scenarios have been considered. Simulation results show the excellent performance of the ANN for solving problems (a)-(d). (C) 2010 Elsevier B.V. All rights reserved.