920 resultados para power law
Resumo:
It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.
Resumo:
The solar wind continuously flows out from the Sun, filling interplanetary space and directly interacting with the surfaces of small planetary bodies and other objects throughout the solar system. A significant fraction of these ions backscatter from the surface as energetic neutral atoms (ENAs). The first observations of these ENA emissions from the Moon were recently reported from the Interstellar Boundary Explorer (IBEX). These observations yielded a lunar ENA albedo of ˜10% and showed that the Moon reflects ˜150 metric tons of neutral hydrogen per year. More recently, a survey of the first 2.5 years of IBEX observations of lunar ENAs was conducted for times when the Moon was in the solar wind. Here, we present the first IBEX ENA observations when the Moon is inside the terrestrial magnetosheath and compare them with observations when the Moon is in the solar wind. Our analysis shows that: (1) the ENA intensities are on average higher when the Moon is in the magnetosheath, (2) the energy spectra are similar above ~0.6* solar wind energy but below there are large differences of the order of a factor of 10, (3) the energy spectra resemble a power law with a "hump" at ˜0.6 * solar wind energy, and (4) this "hump" is broader when the Moon is in the magnetosheath. We explore potential scenarios to explain the differences, namely the effects of the topography of the lunar surface and the consequences of a very different Mach number in the solar wind versus in the magnetosheath.
Resumo:
Clays and claystones are used as backfill and barrier materials in the design of waste repositories, because they act as hydraulic barriers and retain contaminants. Transport through such barriers occurs mainly by molecular diffusion. There is thus an interest to relate the diffusion properties of clays to their structural properties. In previous work, we have developed a concept for up-scaling pore-scale molecular diffusion coefficients using a grid-based model for the sample pore structure. Here we present an operational algorithm which can generate such model pore structures of polymineral materials. The obtained pore maps match the rock’s mineralogical components and its macroscopic properties such as porosity, grain and pore size distributions. Representative ensembles of grains in 2D or 3D are created by a lattice Monte Carlo (MC) method, which minimizes the interfacial energy of grains starting from an initial grain distribution. Pores are generated at grain boundaries and/or within grains. The method is general and allows to generate anisotropic structures with grains of approximately predetermined shapes, or with mixtures of different grain types. A specific focus of this study was on the simulation of clay-like materials. The generated clay pore maps were then used to derive upscaled effective diffusion coefficients for non-sorbing tracers using a homogenization technique. The large number of generated maps allowed to check the relations between micro-structural features of clays and their effective transport parameters, as is required to explain and extrapolate experimental diffusion results. As examples, we present a set of 2D and 3D simulations and investigated the effects of nanopores within particles (interlayer pores) and micropores between particles. Archie’s simple power law is followed in systems with only micropores. When nanopores are present, additional parameters are required; the data reveal that effective diffusion coefficients could be described by a sum of two power functions, related to the micro- and nanoporosity. We further used the model to investigate the relationships between particle orientation and effective transport properties of the sample.
Resumo:
Pulmonary lipofibroblasts are thought to be involved in lung development, regeneration, vitamin A storage, and surfactant synthesis. Most of the evidence for these important functions relies on mouse or rat studies. Therefore, the present study was designed to investigate the presence of lipofibroblasts in a variety of early postnatal and adult mammalian species (including humans) to evaluate the ability to generalize functions of this cell type for other species. For this purpose, lung samples from 14 adult mammalian species as well as from postnatal mice, rats, and humans were investigated using light and electron microscopic stereology to obtain the volume fraction and the total volume of lipid bodies. In adult animals, lipid bodies were observed only, but not in all rodents. In all other species, no lipofibroblasts were observed. In rodents, lipid body volume scaled with body mass with an exponent b = 0.73 in the power law equation. Lipid bodies were not observed in postnatal human lungs but showed a characteristic postnatal increase in mice and rats and persisted at a lower level in the adult animals. Among 14 mammalian species, lipofibroblasts were only observed in rodents. The great increase in lipid body volume during early postnatal development of the mouse lung confirms the special role of lipofibroblasts during rodent lung development. It is evident that the cellular functions of pulmonary lipofibroblasts cannot be transferred easily from rodents to other species, in particular humans.
Resumo:
We study the spatial and temporal distribution of hydrogen energetic neutral atoms (ENAs) from the heliosheath observed with the IBEX-Lo sensor of the Interstellar Boundary EXplorer (IBEX) from solar wind energies down to the lowest available energy (15 eV). All available IBEX-Lo data from 2009 January until 2013 June were included. The sky regions imaged when the spacecraft was outside of Earth's magnetosphere and when the Earth was moving toward the direction of observation offer a sufficient signal-to-noise ratio even at very low energies. We find that the ENA ribbon—a 20° wide region of high ENA intensities—is most prominent at solar wind energies whereas it fades at lower energies. The maximum emission in the ribbon is located near the poles for 2 keV and closer to the ecliptic plane for energies below 1 keV. This shift is an evidence that the ENA ribbon originates from the solar wind. Below 0.1 keV, the ribbon can no longer be identified against the globally distributed ENA signal. The ENA measurements in the downwind direction are affected by magnetospheric contamination below 0.5 keV, but a region of very low ENA intensities can be identified from 0.1 keV to 2 keV. The energy spectra of heliospheric ENAs follow a uniform power law down to 0.1 keV. Below this energy, they seem to become flatter, which is consistent with predictions. Due to the subtraction of local background, the ENA intensities measured with IBEX agree with the upper limit derived from Lyα observations.
Resumo:
Aims. We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods. We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44−2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results. We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km2), with a global number density of nearly 100/km2 and a cumulative size-frequency distribution represented by a power-law with index of −3.6 +0.2/−0.3. The two lobes of 67P appear to have slightly different distributions, with an index of −3.5 +0.2/−0.3 for the main lobe (body) and −4.0 +0.3/−0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of −2.2 +0.2/−0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km2 of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.
Resumo:
Previous multicast research often makes commonly accepted but unverifed assumptions on network topologies and group member distribution in simulation studies. In this paper, we propose a framework to systematically evaluate multicast performance for different protocols. We identify a series of metrics, and carry out extensive simulation studies on these metrics with different topological models and group member distributions for three case studies. Our simulation results indicate that realistic topology and group membership models are crucial to accurate multicast performance evaluation. These results can provide guidance for multicast researchers to perform realistic simulations, and facilitate the design and development of multicast protocols.
Resumo:
CHARACTERIZATION OF THE COUNT RATE PERFORMANCE AND EVALUATION OF THE EFFECTS OF HIGH COUNT RATES ON MODERN GAMMA CAMERAS Michael Stephen Silosky, B.S. Supervisory Professor: S. Cheenu Kappadath, Ph.D. Evaluation of count rate performance (CRP) is an integral component of gamma camera quality assurance and measurement of system dead time (τ) is important for quantitative SPECT. The CRP of three modern gamma cameras was characterized using established methods (Decay and Dual Source) under a variety of experimental conditions. For the Decay method, input count rate was plotted against observed count rate and fit to the paralyzable detector model (PDM) to estimate τ (Rates method). A novel expression for observed counts as a function of measurement time interval was derived and the observed counts were fit to this expression to estimate τ (Counts method). Correlation and Bland-Altman analysis were performed to assess agreement in estimates of τ between methods. The dependencies of τ on energy window definition and incident energy spectrum were characterized. The Dual Source method was also used to estimate τ and its agreement with the Decay method under identical conditions and the effects of total activity and the ratio of source activities were investigated. Additionally, the effects of count rate on several performance metrics were evaluated. The CRP curves for each system agreed with the PDM at low count rates but deviated substantially at high count rates. Estimates of τ for the paralyzable portion of the CRP curves using the Rates and Counts methods were highly correlated (r=0.999) but with a small (~6%) difference. No significant difference was observed between the highly correlated estimates of τ using the Decay or Dual Source methods under identical experimental conditions (r=0.996). Estimates of τ increased as a power-law function with decreasing ratio of counts in the photopeak to the total counts and linearly with decreasing spectral effective energy. Dual Source method estimates of τ varied as a quadratic with the ratio of the single source to combined source activities and linearly with total activity used across a large range. Image uniformity, spatial resolution, and energy resolution degraded linearly with count rate and image distorting effects were observed. Guidelines for CRP testing and a possible method for the correction of count rate losses for clinical images have been proposed.
Resumo:
Three sites were drilled in the Izu-Bonin forearc basin during Ocean Drilling Program (ODP) Leg 126. High-quality formation microscanner (FMS) data from two of the sites provide images of part of a thick, volcaniclastic, middle to upper Oligocene, basin-plain turbidite succession. The FMS images were used to construct bed-by-bed sedimentary sections for the depth intervals 2232-2441 m below rig floor (mbrf) in Hole 792E, and 4023-4330 mbrf in Hole 793B. Beds vary in thickness from those that are near or below the resolution of the FMS tool (2.5 cm) to those that are 10-15 m thick. The bed thicknesses are distributed according to a power law with an exponent of about 1.0. There are no obvious upward thickening or thinning sequences in the bed-by-bed sections. Spaced packets of thick and very thick beds may be a response to (1) low stands of global sea level, particularly at 30 Ma, (2) periods of increased tectonic uplift, or (3) periods of more intense volcanism. Graded sandstones, most pebbly sandstones, and graded to graded-stratified conglomerates were deposited by turbidity currents. The very thick, mainly structureless beds of sandstone, pebbly sandstone, and pebble conglomerate are interpreted as sandy debris-flow deposits. Many of the sediment gravity flows may have been triggered by earthquakes. Long recurrence intervals of 0.3-1 m.y. for the very thickest beds are consistent with triggering by large-magnitude earthquakes (M = 9) with epicenters approximately 10-50 km away from large, unstable accumulations of volcaniclastic sand and ash on the flanks of arc volcanoes. Paleocurrents were obtained from the grain fabric of six thicker sandstone beds, and ripple migration directions in about 40 thinner beds; orientations were constrained by the FMS images. The data from ripples are very scattered and cannot be used to specify source positions. They do, however, indicate that the paleoenvironment was a basin plain where weaker currents were free to follow a broad range of flow paths. The data from sandstone fabric are more reliable and indicate that turbidity currents flowed toward 150? during the time period from 28.9 to 27.3 Ma. This direction is essentially along the axis of the forearc basin, from north to south, with a small component of flow away from the western margin of the basin.
Resumo:
Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (ca. 50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color-encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kfn. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from ca. 700 dB/m at 400 kHz and a power of n = 1-2 in coarse-grained sands to few decibels per meter and n ? 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.
Resumo:
The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.
Resumo:
The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.
Resumo:
Detailed information about the sediment properties and microstructure can be provided through the analysis of digital ultrasonic P wave seismograms recorded automatically during full waveform core logging. The physical parameter which predominantly affects the elastic wave propagation in water-saturated sediments is the P wave attenuation coefficient. The related sedimentological parameter is the grain size distribution. A set of high-resolution ultrasonic transmission seismograms (-50-500 kHz), which indicate downcore variations in the grain size by their signal shape and frequency content, are presented. Layers of coarse-grained foraminiferal ooze can be identified by highly attenuated P waves, whereas almost unattenuated waves are recorded in fine-grained areas of nannofossil ooze. Color -encoded pixel graphics of the seismograms and instantaneous frequencies present full waveform images of the lithology and attenuation. A modified spectral difference method is introduced to determine the attenuation coefficient and its power law a = kF. Applied to synthetic seismograms derived using a "constant Q" model, even low attenuation coefficients can be quantified. A downcore analysis gives an attenuation log which ranges from -700 dB/m at 400 kHz and a power of n=1-2 in coarse-grained sands to few decibels per meter and n :s; 0.5 in fine-grained clays. A least squares fit of a second degree polynomial describes the mutual relationship between the mean grain size and the attenuation coefficient. When it is used to predict the mean grain size, an almost perfect coincidence with the values derived from sedimentological measurements is achieved.
Resumo:
Context. On 12 November 2014, the European mission Rosetta delivered the Philae lander on the nucleus of comet 67P /Churyumov-Gerasimenko (67P). After the first touchdown, the lander bounced three times before finally landing at a site named Abydos. Aims. We provide a morphologically detailed analysis of the Abydos landing site to support Philae's measurements and to give context for the interpretation of the images coming from the Comet Infrared and Visible Analyser (CIVA) camera system onboard the lander. Methods. We used images acquired by the OSIRIS Narrow Angle Camera (NAC) on 6 December 2014 to perform the analysis of the Abydos landing site, which provided the geomorphological map, the gravitational slope map, the size-frequency distribution of the boulders. We also computed the albedo and spectral reddening maps. Results. The morphological analysis of the region could suggest that Philae is located on a primordial terrain. The Abydos site is surrounded by two layered and fractured outcrops and presents a 0.02 km(2) talus deposit rich in boulders. The boulder size frequency distribution gives a cumulative power-law index of 4.0 + 0.3/0.4, which is correlated with gravitational events triggered by sublimation and /or thermal fracturing causing regressive erosion. The average value of the albedo is 5.8% at lambda(1) = 480.7 nm and 7.4% at lambda(2) = 649.2 nm, which is similar to the global albedos derived by OSIRIS and CIVA, respectively.
Resumo:
The statistical distributions of different software properties have been thoroughly studied in the past, including software size, complexity and the number of defects. In the case of object-oriented systems, these distributions have been found to obey a power law, a common statistical distribution also found in many other fields. However, we have found that for some statistical properties, the behavior does not entirely follow a power law, but a mixture between a lognormal and a power law distribution. Our study is based on the Qualitas Corpus, a large compendium of diverse Java-based software projects. We have measured the Chidamber and Kemerer metrics suite for every file of every Java project in the corpus. Our results show that the range of high values for the different metrics follows a power law distribution, whereas the rest of the range follows a lognormal distribution. This is a pattern typical of so-called double Pareto distributions, also found in empirical studies for other software properties.