944 resultados para poverty-reduction transfers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the report on the workshop on “Small Indigenous Freshwater Fish Species: Their Role in Poverty Alleviation, Food Security and Conservation of Biodiversity”, organized by the International Collective in Support of Fishworkers(ICSF) in collaboration with the Inland Fisheries Society of India (IFSI). The workshop was a forum for exchange of views on the role of small indigenous freshwater fish species (SIFFS) in enhancing rural food supply and livelihood security, and in conserving biodiversity. The workshop also discussed the socioeconomic and cultural contexts for the culture and capture of SIFFS, and how to enhance access—especially for women—to better incomes, livelihoods and nutritional security, through appropriate policy spaces. This report provides a fresh focus on SIFFS, usually regarded as ‘trash’ fish. It urges scientists, researchers and decisionmakers to develop policy and legislative measures to ensure the conservation and promotion of SIFFS, both in capture- and culture-fisheries systems. This report will be useful for fishworker organizations, researchers, policymakers, fish farmers, members of civil society and anyone interested in fisheries and livelihoods. (PDF contains 86 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether “quantization commutes with reduction.” Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kähler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kähler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds.

In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kähler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or “admissible”, values of momentum.

We first propose a reduction procedure for the prequantum geometric structures that “covers” symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems.

We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces.

Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees with its usual decomposition by irreducible representations, and so proves that quantization and reduction do indeed commute in this context.

A significant omission from the proof is the construction of an inner product on the space of polarized sections, and a discussion of its behavior under reduction. In the concluding chapter of the thesis, we suggest some ideas for future work in this direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.

For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.

For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.

For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous emission into the lasing mode fundamentally limits laser linewidths. Reducing cavity losses provides two benefits to linewidth: (1) fewer excited carriers are needed to reach threshold, resulting in less phase-corrupting spontaneous emission into the laser mode, and (2) more photons are stored in the laser cavity, such that each individual spontaneous emission event disturbs the phase of the field less. Strong optical absorption in III-V materials causes high losses, preventing currently-available semiconductor lasers from achieving ultra-narrow linewidths. This absorption is a natural consequence of the compromise between efficient electrical and efficient optical performance in a semiconductor laser. Some of the III-V layers must be heavily doped in order to funnel excited carriers into the active region, which has the side effect of making the material strongly absorbing.

This thesis presents a new technique, called modal engineering, to remove modal energy from the lossy region and store it in an adjacent low-loss material, thereby reducing overall optical absorption. A quantum mechanical analysis of modal engineering shows that modal gain and spontaneous emission rate into the laser mode are both proportional to the normalized intensity of that mode at the active region. If optical absorption near the active region dominates the total losses of the laser cavity, shifting modal energy from the lossy region to the low-loss region will reduce modal gain, total loss, and the spontaneous emission rate into the mode by the same factor, so that linewidth decreases while the threshold inversion remains constant. The total spontaneous emission rate into all other modes is unchanged.

Modal engineering is demonstrated using the Si/III-V platform, in which light is generated in the III-V material and stored in the low-loss silicon material. The silicon is patterned as a high-Q resonator to minimize all sources of loss. Fabricated lasers employing modal engineering to concentrate light in silicon demonstrate linewidths at least 5 times smaller than lasers without modal engineering at the same pump level above threshold, while maintaining the same thresholds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation will cover several disparate topics, with the overarching theme centering on the investigation of organometallic C-H activation and hydrocarbon transformation and upgrading. Chapters 2 and 3 discuss iridium and rhodium analogues of the Shilov cycle catalyst for methane to methanol oxidation, and Chapter 4 on the recently discovered ROA mechanistic motif in catalysts for various alkane partial oxidation reactions. In addition, Chapter 5 discusses the mechanism of nickel pyridine bisoxazoline Negishi catalysts for asymmetric and stereoconvergent C-C coupling, and the appendices discuss smaller projects on rhodium H/D exchange catalysts and DFT method benchmarking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is amongst the most dreaded problems of the new millennium. Bangladesh is a coastal country bounded by Bay of Bengal on its southern part and here natural disasters are an ongoing part of human life. This paper discusses about the possible impact of climate change through tropical cyclones, storm surges, coastal erosion and sea level rise in the coastal community of Bangladesh and how they cope with these extreme events by the help of mangrove ecosystem. Both qualitative and quantitative discussions are made by collected data from different research work those are conducted in Bangladesh. Mangrove ecosystem provides both goods and services for coastal community, helps to improve livelihood options and protect them from natural disaster by providing variety of environmental support

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prime thrust of this dissertation is to advance the development of fuel cell dioxygen reduction cathodes that employ some variant of multicopper oxidase enzymes as the catalyst. The low earth-abundance of platinum metal and its correspondingly high market cost has prompted a general search amongst chemists and materials scientists for reasonable alternatives to this metal for facilitating catalytic dioxygen reduction chemistry. The multicopper oxidases (MCOs), which constitute a class of enzyme that naturally catalyze the reaction O2 + 4H+ + 4e- → 2H2O, provide a promising set of biochemical contenders for fuel cell cathode catalysts. In MCOs, a substrate reduces a copper atom at the type 1 site, where charge is then transferred to a trinuclear copper cluster consisting of a mononuclear type 2 or “normal copper” site and a binuclear type 3 copper site. Following the reduction of all four copper atoms in the enzyme, dioxygen is then reduced to water in two two-electron steps, upon binding to the trinuclear copper cluster. We identified an MCO, a laccase from the hyperthermophilic bacterium Thermus thermophilus strain HB27, as a promising candidate for cathodic fuel cell catalysis. This protein demonstrates resilience at high temperatures, exhibiting no denaturing transition at temperatures high as 95°C, conditions relevant to typical polymer electrolyte fuel cell operation.

In Chapter I of this thesis, we discuss initial efforts to physically characterize the enzyme when operating as a heterogeneous cathode catalyst. Following this, in Chapter II we then outline the development of a model capable of describing the observed electrochemical behavior of this enzyme when operating on porous carbon electrodes. Developing a rigorous mathematical framework with which to describe this system had the potential to improve our understanding of MCO electrokinetics, while also providing a level of predictive power that might guide any future efforts to fabricate MCO cathodes with optimized electrochemical performance. In Chapter III we detail efforts to reduce electrode overpotentials through site-directed mutagenesis of the inner and outer-sphere ligands of the Cu sites in laccase, using electrochemical methods and electronic spectroscopy to try and understand the resultant behavior of our mutant constructs. Finally, in Chapter IV, we examine future work concerning the fabrication of enhanced MCO cathodes, exploring the possibility of new cathode materials and advanced enzyme deposition techniques.