919 resultados para polygon fault
Resumo:
The Pyrenees are an alpine chain with hercynian basement rocks that outcrop in a large area called the Axial Zone. These rocks have been involved in the alpine deformation events although their main structural features resulted from the Hercynian orogeny. A relevant characteristic of the Hercynian basement is a change in structural style in depth which has been commonly studied and interpreted in the Pallaresa Anticlinorium, in the Central Pyrenees. This anticlinorium is a complex hercynian structural unit whose southern part belongs to the suprastructure whereas the northern part corresponds mostly to a transition zone between the infrastructure and the suprastructure. Rocks of the suprastructure show a steeply dipping slaty cleavage as the dominant structure, which is overprinting folds and thrusts rarely going with pervasive deformation. The transition zone results from a slaty cleavage, very often close to the bedding, overprinted by one or two steep crenulation cleavages. A gradual boundary exists between both structural levels and it can be observed that the deformation developing slaty cleavage in the suprastructure grades to a crenulation foliation in the transition zone. The gradual character of that boundary, as seen in the northern end of the transition zone, suggests that the southern sharp boundary is not original. That boundary is interpreted as a northward dipping inverse fault, possibly with Alpine age. That fault causes a relative uplift of the rocks of the transition zone and gives this sharp boundary with the suprastructural levels. It provokes the asymmetry in the Pallaresa anticlinorium
Resumo:
The Western Cordillera of Ecuador consists of Cretaceous crustal fragments of oceanic plateaux and superimposed insular arcs, which were accreted to the northwestern South American margin during the Late Cretaceous and Paleocene. Slices of high-grade metabasites, ultramafic rocks, gabbros and basalts, unmetamorphosed radiolarian cherts and scarce garnet-bearing metasediments were randomly exhumed along Miocene to Recent transcurrent faults crosscutting the Western Cordillera. The basalts show geochemical characteristics of oceanic plateau basalts (flat REE patterns, La/Nb = 0.85). The gabbros differ from the basalts in having lower REE levels, positive Eu anomalies, and negative Nb and Ta anomalies; they are interpreted as resulting from arc magmatism. The amphibolites and banded amphibolites have major and trace element chemistry similar to that of oceanic plateau basalts (flat REE patterns, La/Nb = 0.86) or to cumulate gabbros. The granulite shares with oceanic plateaus similar trace element chemistry (flat REE patterns, La/Nb < 1) and epsilon(Ndi) values (+7.6). Continent-derived metasediments are depleted in heavy REE (La/Y = 4.8) and have a negative Eu anomaly. Foliated Iherzolites, melagabbronorites and pyroxenites consist of serpentinized olivine + cpx + opx +/- Ca-plagioclase. Lherzolites, melagabbronorites and pyroxenites are LREE depleted with positive Eu anomalies, while the harzburgite displays a U-shaped REE pattern. The trace element abundances of the ultramafic rocks are very low (0.1 to 1 times the chonctritic and primitive mantle values). The ultramafic rocks represent fragments of depleted mantle, deformed cpx-rich cumulate, and continental lithospheric mantle or mantle contaminated by subduction-fluid. Except the scarce quartz-rich metasediments, all these rocks likely represent remnants of accreted oceanic crustal fragments and associated depleted mantle. Since these samples were randomly sampled at depth by the fault, we propose that the Western Cordillera and its crustal root are mainly of oceanic nature.
Resumo:
The Baix Empordà-Selva-Gavarres aquifer system is related to the fault set that created the tectonic basins of Empordà and Selva areas (NE Spain) during the Neogene. In this work, we describe groundwater hydrogeological, hydrochemical and isotopical (3H, δD, δ18O, and the 87Sr/86Sr ratio) characteristics of this system in order to illustrate the relevance of fault zones in groundwater flow-paths and the recharge. In that way, we identify two flow systems, with distinct hydrochemistry and isotopes. A local flow system originates at the Gavarres Range, and it flows towards the basins of the Baix Empordà and Selva, with an approximate residence time of 20 years. Additionally, a regional flow system has only been identified in the Selva basin. This one is related to the main fault zones, as preferential flow paths. Its recharge is located in mountain ranges with higher altitudes, namely the Transversal and Guilleries Ranges, with residence times larger than 50 years. Isotopical data has also shown mixing processes between both flow systems and rainfall recharge while multivariate statistical analysis of principal components has shown the main processes that control hydrochemistry of each flow systems
Resumo:
The pre-Mesozoic metamorphic pattern of the External Massifs, composed of subunits of different metamorphic histories, resulted from the telescoping of Variscan, Ordovician and older metamorphic and structural textures and formations. During an early period, the future External Massifs were part of a peri-Gondwanian microplate evolving as an active margin. Precambrian to lower Palaeozoic igneous and sedimentary protoliths were reworked during an Ordovician subduction cycle (eclogites, granulites) preceding Ordovician anatexis and intrusion of Ordovician granitoids. Little is known about the time period when the microcontinent containing the future External Massifs followed a migration path leading to collision with Laurussia. Corresponding rock-series have not been identified. This might be because they have been eroded or transformed by migmatisation or because they remain hidden in the monocyclic areas. Besides the transformations which originated during the Ordovician subduction cycle, strong metamorphic transformations resulted from Variscan collision when many areas underwent amphibolite facies transformations and migmatisation. The different subunits composing the External Massifs and their corresponding P-T evolution are the expression of different levels in a nappe pile, which may have formed before Visean erosion and cooling. The presence of durbachitic magmatic rocks may be the expression of a large scale Early Variscan upwelling line which formed after Variscan lithospheric subduction. Late Variscan wrench fault tectonics and crustal thinning accompanied by high thermal gradients triggered several pulses of granite intrusions.
Resumo:
Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced.
Resumo:
Contient : 1 « Deul et ennuy... » ; 2 « Beata es, Maria... » ; 3 « Da pacem, Domine... » ; 4 « Da pacem, Domine... » ; 5 « Dulcis amica Dei... » ; 6 « Si sumpsero... » ; 7 « O quam glorifica... » ; 8 « Si dedero... » ; 9 « Mes pensées... » ; 10 « L'eure est venue... » ; 11 « Despitant fortune... » ; 12 « Allez, regretz... » ; 13 « Les grans regretz... » ; 14 « Va t'em, regret... » ; 15 « Qui belles amours a... » ; 16 « Se je vous eslongne... » ; 17 « Helas! de vous certes... » ; 18 « Si vous voulez estre... » ; 19 « N'ay ge pas droit... » ; 20 « Ha! qu'il m'ennuye... » ; 21 « Seul et eureux... » ; 22 « La saison en est... » ; 23 « Penser en vous... » ; 24 « Venez, regretz... » ; 25 « Des fais mondains... » ; 26 « De plus en plus... » ; 27 « Mon souvenir... » ; 28 « A heur le tiens... » ; 29 « Tant ay d'ennuyt... » ; 30 « Comme femme desconfortée... » ; 31 « Si congié prens... » ; 32 « Se mieulx ne vient... » ; 33 « Plus que aultre... » ; 34 « En l'ombre d'ung buyssonnet... » ; 35 « La regrettée... » ; 36 « Je sçay tout... » ; 37 « Fors seullement... » ; 38 « Il n'est vivant... » ; 39 « Vostre beaulté... » ; 40 « Helas ! pourquoy... » ; 41 « Je ne viz oncques... » ; 42 « Royne dez flours... » ; 43 « Faisons boutons... » ; 44 « Fin ch'yo vivo... » ; 45 « Yo so contento... » ; 46 « Que vous ma dame... » ; 47 « La gaye pastoure... » ; 48 « Se j'ay perdu mon amy... » ; 49 « Mon seul plaisir... » ; 50 « Ce moys de may... » ; 51 « Si fayt il vous... » ; 52 « Pastourelle... » ; 53 « Belle, se j'avoye... » ; 54 « Amoureuse m'y fault estre... » ; 55 « Tant bel m'y sont... » ; 56 « Se j'avoye de la soie... » ; 57 « Lourdault... » ; 58 « L'autre jour m'y chevauchoye... » ; 59 « La nuyt s'en va... » ; 60 « Il estoit ung bon homme... » ; 61 « Fors seulement... » ; 62 « Crux triumphans... » ; 63 « Jesus, dignum nomen... » ; 64 « My levay... » ; 65 « Mary de par sa mere... » ; 66 « La cuiller d'or... » ; 67 « Faictes, s'il vous plait... » ; 68 « Ne par Dieu... » ; 69 « Seullette suis... » ; 70 « Mon mari m'a diffamée... » ; 71 « L'amour de moy est enclose... » ; 72 « Mannette m'a mandé... » ; 73 « A l'ombre du bissonnet... » ; 74 « Triste et pensif... » ; 75 « Cum summo... »
Resumo:
The dolomite veins making up rhythmites common in burial dolomites are not cement infillings of supposed cavities, as in the prevailing view, but are instead displacive veins, veins that pushed aside the host dolostone as they grew. Evidence that the veins are displacive includes a) small transform-fault-like displacements that could not have taken place if the veins were passive cements, and b) stylolites in host rock that formed as the veins grew in order to compensate for the volume added by the veins. Each zebra vein consists of crystals that grow inward from both sides, and displaces its walls via the local induced stress generated by the crystal growth itself. The petrographic criterion used in recent literature to interpret zebra veins in dolomites as cements - namely, that euhedral crystals can grow only in a prior void - disregards evidence to the contrary. The idea that flat voids did form in dolostones is incompatible with the observed optical continuity between the saddle dolomite euhedra of a vein and the replacive dolomite crystals of the host. The induced stress is also the key to the self-organization of zebra veins: In a set of many incipient, randomly-spaced, parallel veins just starting to grow in a host dolostone, each vein¿s induced stress prevents too-close neighbor veins from nucleating, or redissolves them by pressure-solution. The veins that survive this triage are those just outside their neighbors¿s induced stress haloes, now forming a set of equidistant veins, as observed.
Resumo:
Ultramafic rocks, mainly serpentinized peridotites of mantle origin, are mostly associated with the ophiolites of Mesozoic age that occur in belts along three of the margins of the Caribbean plate. The most extensive exposures are in Cuba. The ultramafic-mafic association (ophiolites) were formed and emplaced in several different tectonic environments. Mineralogical studies of the ultramafic rocks and the chemistry of the associated mafic rocks indicate that most of the ultramafic-mafic associations in both the northern and southern margins of the plate were formed in arc-related environments. There is little mantle peridotite exposed in the ophiolitic associations of the west coast of Central America, in the south Caribbean in Curacao and in the Andean belts in Colombia. In these occurrences the chemistry and age of the mafic rocks indicates that this association is mainly part of the 89 Ma Caribbean plateau province. The age of the mantle peridotites and associated ophiolites is probably mainly late Jurassic or Early Cretaceous. Emplacement of the ophiolites possibly began in the Early Cretaceous in Hispaniola and Puerto Rico, but most emplacement took place in the Late Cretaceous to Eocene (e.g. Cuba). Along the northern South America plate margin, in the Caribbean mountain belt, emplacement was by major thrusting and probably was not completed until the Oligocene or even the early Miocene. Caribbean mantle peridotites, before serpentinization, were mainly harzburgites, but dunites and lherzolites are also present. In detail, the mineralogical and chemical composition varies even within one ultramafic body, reflecting melting processes and peridotite/melt interaction in the upper mantle. At least for the northern Caribbean, uplift (postemplacement tectonics) exposed the ultramafic massifs as a land surface to effective laterization in the beginning of the Miocene. Tectonic factors, determining the uplift, exposing the peridotites to weathering varied. In the northern Caribbean, in Guatemala, Jamaica, and Hispaniola, uplift occurred as a result of transpresional movement along pre-existing major faults. In Cuba, uplift occurred on a regional scale, determined by isostatic adjustment. In the south Caribbean, uplift of the Cordillera de la Costa and Serrania del Interior exposing the peridotites, also appears to be related to strike-slip movement along the El Pilar fault system. In the Caribbean, Ni-laterite deposits are currently being mined in the central Dominican Republic, eastern Cuba, northern Venezuela and northwest Colombia. Although apparently formed over ultramafic rocks of similar composition and under similar climatic conditions, the composition of the lateritic soils varies. Factors that probably determined these differences in laterite composition are geomorphology, topography, drainage and tectonics. According to the mineralogy of principal ore-bearing phases, Dominican Ni-laterite deposits are classified as the hydrous silicate-type. The main Ni-bearing minerals are hydrated Mg-Ni silicates (serpentine and ¿garnierite¿) occurring deeper in the profile (saprolite horizon). In contrast, in the deposits of eastern Cuba, the Ni and Cooccurs mainly in the limonite zone composed of Fe hydroxides and oxides as the dominant mineralogy in the upper part of the profile, and are classified as the oxide-type.
Resumo:
Numerous rockfalls were detected in the Las Cuevas valley, Argentina, after the 27 February 2010 earthquake in Chile. Live rockfalls were observed during aftershocks of 11 March 2010. Many rockfall source areas coincide with known thrust fault and some areas presented a rockfall activity even after the tremors. Some rockfalls crossed the National Road 7 but no damages to houses or vehicles were reported. This study illustrates how the 27 February 2010 earthquake impacted on unstable slopes in a valley far from the earthquakes epicentre. It is an interesting addition to previous studies on landslides caused by earthquakes because of the high magnitude of the event and of its aftershocks.
Resumo:
The As Pontes basin (12 km2), NW Iberian Peninsula, is bounded by a double restraining bend of a dextral strike-slip fault, which is related to the western onshore end of the Pyrenean belt. Surface and subsurface data obtained from intensive coal exploration and mining in the basin since the 1960s together with additional structural and stratigraphic sequence analysis allowed us to determine the geometric relationships between tectonic structures and stratigraphic markers. The small size of the basin and the large amount of quality data make the As Pontes basin a unique natural laboratory for improving our understanding of the origin and evolution of restraining bends. The double restraining bend is the end stage of the structural evolution of a compressive underlapping stepover, where the basin was formed. During the first stage (stepover stage), which began ca. 30 Ma ago (latest Rupelian) and lasted 3.4 My, two small isolated basins bounded by thrusts and normal faults were formed. For 1.3 My, the strike-slip faults, which defined the stepover, grew towards each other until joining and forming the double restraining bend, which bounds one large As Pontes basin (transition stage). The history of the basin was controlled by the activity of the double restraining bend for a further 3.4 My (restraining bend stage) and ended in mid-Aquitanian times (ca. 22 Ma).
Resumo:
The sandstone-hosted Beverley uranium deposit is located in terrestrial sediments in the Lake Frome basin in the North Flinders Ranges, South Australia. The deposit is 13 km from the U-rich Mesoproterozoic basement of the Mount Painter inlier, which is being uplifted 100 to 200 m above the basin by neotectonic activity that probably initiated in the early Pliocene. The mineralization was deposited mainly in organic matter-poor Miocene lacustrine sands and partly in the underlying reductive strata comprising organic matter-rich clays and silts. The bulk of the mineralization consists of coffinite and/or uraninite nodules, growing around Co-rich pyrite with an S isotope composition (delta S-34 = 1.0 +/- 0.3 parts per thousand), suggestive of an early diagenetic lacustrine origin. In contrast, authigenic sulfides in the bulk of the sediments have a negative S isotope signature (delta S-34 ranges from -26.2 to -35.5 parts per thousand), indicative of an origin via bacterially mediated sulfate reduction. Minor amounts of Zn-bearing native copper and native lead also support the presence of specific, reducing microenvironments in the ore zone. Small amounts of carnotite are associated with the coffinite ore and also occur beneath a paleosoil horizon overlying the uranium deposit. Provenance studies suggest that the host Miocene sediments were derived from the reworking of Early Cretaceous glacial or glaciolacustrine sediments ultimately derived from Paleozoic terranes in eastern Australia. In contrast, the overlying Pliocene strata were in part derived from the Mesoproterozoic basement inlier. Mass-balance and geochemical data confirm that granites of the Mount Painter domain were the ultimate source of U and BEE at Beverley. U-Pb dating of coffinite and carnotite suggest that the U mineralization is Pliocene (6.7-3.4 Ma). The suitability of the Beverley deposit for efficient mining via in situ leaching, and hence its economic value, are determined by the nature of the hosting sand unit, which provides the permeability and low reactivity required for high fluid flow and low chemical consumption. These favorable sedimentologic and geometrical features result from a complex conjunction of factors, including deposition in lacustrine shore environment, reworking of angular sands of glacial origin, deep Pliocene weathering, and proximity to an active fault exposing extremely U rich rocks.
Resumo:
The end of an orogenic Wilson cycle corresponds to amalgamation of terranes into a Pangaea and is marked by widespread magmatism dominated by granitoids. The post-collision event starts with magmatic processes still influenced by subducted crustal materials. The dominantly calc-alkaline suites show a shift from normal to high-K to very high-K associations. Source regions are composed of depleted and later enriched orogenic subcontinental lithospheric mantle, affected by dehydration melting and generating more and more K- and LILE-rich magmas. In the vicinity of intra-crustal magma chambers, anatexis by incongruent melting of hydrous minerals may generate peraluminous granitoids bearing mafic enclaves. The post-collision event ends with emplacement of bimodal post-orogenic (PO) suites along transcurrent fault zones. Two suites are defined, (i) the alkali-calcic monzonite-monzogranite-syenogranite-alkali feldspar granite association characterised by [biotite + plagioclase] fractionation and moderate [LILE + HFSE] enrichments and (ii) the alkaline monzonite-syenite-alkali feldspar granite association characterised by [amphibole + alkali feldspar] fractionation and displaying two evolutionary trends, one peralkaline with sodic mafic mineralogy and higher enrichments in HFSE than in LILE, and the other aluminous biotite-bearing marked by HFSE depletion relative to LILE due to accessory mineral precipitation. Alkali-calcic and alkaline suites differ essentially in the amounts of water present within intra-crustal magma chambers, promoting crystallisation of various mineral assemblages. The ultimate enriched and not depleted mantle source is identical for the two PO suites. The more primitive LILE and HFSE-rich source rapidly replaces the older orogenic mantle source during lithosphere delamination and becomes progressively the thermal boundary layer of the new lithosphere. Present rock compositions are a mixture of major mantle contribution and various crustal components carried by F-rich aqueous fluids circulating within convective cells created around magma chambers. In favourable areas, PO suites pre-date a new orogenic Wilson cycle. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We explore the timing of deformation and exhumation of the Siviez-Mischabel Nappe (western Swiss Alps), which has been considered a classic example of a midcrustal crystalline nappe since the studies of Argand [1916]. This study presents Ar-40/Ar-39 ages obtained on both synkinematic white mica from Permo-Triassic cover sediments and more complex white mica populations from basement gneisses of the Siviez-Mischabel and middle Pennine Nappes. Primary foliation developed in cover units by nucleation, growth, and rigid rotation of mica grains during noncoaxial Alpine deformation. Although some samples show a crenulation of this primary foliation, mica growth appears to have occurred only during the development of primary foliation, the main phase of greenschist facies deformation related to imbrication of the Siviez-Mischabel Nappe and other middle Pennine Nappes. Good agreement exists between independent estimates of the timing of deformation and reported Ar-40/Ar-39, white mica ages from cover units of the central and southern Siviez-Mischabel Nappe. In cover units from the central and southern Siviez-Mischabel regions of the study area, Ar-40/Ar-39 ages appear to date synkinematic white mica growth. Results suggest that the Siviez-Mischabel :Nappe was emplaced and developed foliation during a 5 m.y. period from 41 to 36 Ma. In cover units from the eastern Siviez-Mischabel, however, Ar-40/Ar-39 white mica ages appear to date postkinematic thermal events. These thermal events may be related to Oligocene magmatic activity in the lower Pennine Nappes or to Miocene development of the Simplon fault zone. Variations in the relation between Alpine age and grain size for cover samples from the central, eastern, and southern Siviez-Mischabel correlate well with the regional variations in temperature inferred from quartz microfabrics and the pattern of regional metamorphism. When considered in concert with other recent isotopic studies on the timing of major tectonic and thermal events in the western Swiss Alps, these data support arguments that the relative timing of events such as thrusting and back thrusting of crystalline nappes in hinterland units and exhumation of high-pressure units in the suture zone of the western Alps are intimately related and synchronous on the scale of a few million years. Copyright 1998 by the American Geophysical Union.
Resumo:
Despite a trend of decreasing teen fatalities due to motor vehicle crashes over the past decade, they remain the leading cause of adolescent fatalities in Iowa. The purpose of this study was to create detailed case studies of each fatal motor vehicle crash involving a driver under the age of 20 that occurred in Iowa in 2009, 2010, and 2011. Data for each crash were gathered from media sources, law enforcement agencies, and the Iowa Department of Transportation. The driving records of the teens, which included their licensure history, prior traffic citations, and prior crashes, were also acquired. In addition, data about the charges filed against a teen as a result of being involved in a fatal crash were obtained. A total of 126 crashes involving 131 teen drivers that resulted in 143 fatalities were analyzed. Many findings for fatal crashes involving teen drivers in Iowa are consistent with national trends, including the overrepresentation of male drivers, crash involvement that increases with age, crash involvement per vehicle miles traveled that decreases with age, and prevalence of single-vehicle road departure crashes. Relative to national statistics, teen fatalities from crashes in Iowa are more likely to occur from midnight to 6am and from 9am to noon. Crash type varied by driver age and county population level. Teen drivers contributed to the fatal crashes at a rate of 74%; contribution of the teen driver was unknown for 11% of crashes. Speed was a factor for about 25% of the crashes for which a teen driver was at fault. The same was also true of alcohol/drug impairment. Only 20% of the rear-seat occupants of the teen drivers’ vehicles wore seat belts compared to 60% use for the front-seat occupants. Analysis of the teens’ driving records prior to the fatal crash suggests at-fault crashes and speeding violations are associated with contributing to the fatal crash.
Resumo:
The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.