899 resultados para polarization interferometry
Resumo:
The violent merger of two carbon-oxygen white dwarfs has been proposed as a viable progenitor for some Type Ia supernovae. However, it has been argued that the strong ejecta asymmetries produced by this model might be inconsistent with the low degree of polarization typically observed in Type Ia supernova explosions. Here, we test this claim by carrying out a spectropolarimetric analysis for the model proposed by Pakmor et al. for an explosion triggered during the merger of a 1.1 and 0.9 M⊙ carbon-oxygen white dwarf binary system. Owing to the asymmetries of the ejecta, the polarization signal varies significantly with viewing angle. We find that polarization levels for observers in the equatorial plane are modest (≲1 per cent) and show clear evidence for a dominant axis, as a consequence of the ejecta symmetry about the orbital plane. In contrast, orientations out of the plane are associated with higher degrees of polarization and departures from a dominant axis. While the particular model studied here gives a good match to highly polarized events such as SN 2004dt, it has difficulties in reproducing the low polarization levels commonly observed in normal Type Ia supernovae. Specifically, we find that significant asymmetries in the element distribution result in a wealth of strong polarization features that are not observed in the majority of currently available spectropolarimetric data of Type Ia supernovae. Future studies will map out the parameter space of the merger scenario to investigate if alternative models can provide better agreement with observations.
Resumo:
Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (-\-)) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(-/-) macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(-/-) macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(-/-) macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (-/-) mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation.
Resumo:
This paper presents a novel high symmetry balun which significantly improves the performance of dipole-based dual-polarized antennas. The new balun structure provides enhanced differential capability leading to high performance in terms of port-to-port isolation and far-field cross polarization. An example antenna using this balun is proposed. The simulated results show 53.5% of fractional bandwidth within the band 1.71−2.96 GHz (VSWR<1.5) and port-to-port isolation >59 dB. The radiation characteristic shows around 9 dBi of gain and far-field cross polarization <−48 dBi over the entire bandwidth. The detailed balun functioning and full antenna measurements will be presented during the conference. Performance comparison with similar structures will be also provided.
Resumo:
High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.
Resumo:
Calculations of synthetic spectropolarimetry are one means to test multidimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M⊙ white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a 2D double-detonation model and a 3D delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels (<1 per cent) for both explosion models. Polarization in the continuum peaks at ∼0.1–0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si II λ6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O I λ7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.
Resumo:
Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.
Resumo:
Der ischämische Schlaganfall ist nicht nur die zweithäufigste Todesursache weltweit, sondern auch eine der Hauptursachen für körperliche Beeinträchtigungen im Erwachsenenalter. Das Ausmaß der durch den Schlaganfall hervorgerufenen Gewebeschädigung ist stark durch das Immunsystem geprägt. Die im Zentralnervensystem (ZNS) ansässigen Mikroglia und die aus dem Blutsystem infiltrierenden Makrophagen sind die Schlüsselzellen der lokalen und systemischen Entzündungsantwort nach dem ischämischen Schlaganfall. Sowohl Mikroglia als auch Makrophagen spielen in der Entwicklung der Gewebeschädigung eine duale Rolle. Zum einen phagozytieren sie Zelltrümmer und unterstützen neuroregenerative Prozesse, zum anderen sind diese Zellen in der Lage den Zustand der Gewebsschädigung zu verschlimmern und einer Regeneration des ZNS entgegenzuwirken. Die Polarisierung der Mikroglia/Makrophagen hin zu verschiedenen Phänotypen ist abhängig von der jeweiligen Phase der Gewebeschädigung. Der destruktive, proinflammatorische Phänotyp (M1) steht dabei dem protektiven, antiinflammatorischen Phänotyp (M2) gegenüber. Die Notwendigkeit einer zielgerichteten Regulierung der polarisierten Mikroglia/Makrophagen zum protektiven M2-Phänotyp wurde bereits mehrfach im Zusammenhang mit der Behandlung von neurodegenerativen Erkrankungen erwähnt. In der vorliegenden Dissertation soll die immunregulierende und neuroprotektive Wirkung der microRibonukleinsäure-124 (miRNA-124) in Bezug auf die Polarisierung von Mikroglia/Makrophagen zu verschiedenen Zeitpunkten nach Verschluss der Arteria cerebri media (ACM) im Gehirn von Mäusen gezeigt werden. Zu diesem Zweck wurde die liposomierte miRNA-124 zu einem frühen Zeitpunkt (Tag 2) und zu einem späten Zeitpunkt (Tag 10) nach Verschluss der ACM verabreicht. Die Behandlung mit der miRNA-124 zu einem frühen Zeitpunkt resultierte dabei in einem signifikanten Anstieg in der Anzahl der M2-positiven Mikroglia/Makrophagen im Vergleich zur Kontrollgruppe. Gleichzeitig nahm die Anzahl der M1-positiven Mikroglia/Makrophagen signifikant ab. Im Wesentlichen resultierte die Behandlung mit der miRNA-124 zu beiden Zeitpunkten in einem geringeren Verhältnis von proinflammatorischen (M1) zu antiinflammatorischen (M2) Mikroglia/Makrophagen. Zu den weiteren Erkenntnissen einer frühzeitigen Behandlung im Rahmen dieser Dissertation gehören: (i) eine signifikante Zunahme des neuronalen Überlebens, das zudem positiv mit der Anzahl der M2-positiven Mikroglia/Makrophagen korreliert, (ii) eine verbesserte funktionelle Erholung, welche in Verbindung mit den veränderten neuroinflammatorischen Ereignissen steht und (iii) ein signifikant verkleinertes Läsionsareal, welches durch reaktive Astrozyten zum gesunden Gewebe hin abgegrenzt wird. Die Ergebnisse dieser Dissertation zeigen, dass die Verabreichung von miRNA-124 eine neue Möglichkeit zur Regulierung der Immunantwort und der Neuroprotektion im Rahmen der Behandlung des ischämischen Schlaganfalls darstellt.
Resumo:
The comprehensive study on the coupling of magnetism, electrical polarization and the crystalline lattice with the off-stoichiometric effects in self-doped multiferroic hexagonal h-LuMnxO3±δ (0.92≤x≤1.12) ceramic oxides was carried out for the PhD work. There is a complex coupling of the three ferroic degrees. The cancelation of the magnetic moments of ions in the antiferromagnetic order, electric polarization with specific vortex/antivortex topology and lattice properties have pushed researchers to find out ways to disclose the underlying physics and chemistry of magneto-electric and magneto-elastic couplings of h-RMnO3 multiferroic materials. In this research work, self-doping of Lu-sites or Mn-sites of h-LuMnxO3±δ ceramics prepared via solid state route was done to pave a way for deeper understanding of the antiferromagnetic transition, the weak ferromagnetism often reported in the same crystalline lattices and the ferroelectric properties coupled to the imposed lattice changes. Accordingly to the aim of the PhD thesis, the objectives set for the sintering study in the first chapter on experimental results were two. First, study of sintering off-stoichiometric samples within conditions reported in the bibliography and also extracted from the phase diagrams of the LuMnxO3±δ, with a multiple firings ending with a last high temperature step at 1300ºC for 24 hours. Second, explore longer annealing times of up to 240 hours at the fixed temperature of 1300 ºC in a search for improving the properties of the solid solution under study. All series of LuMnxO3±δ ceramics for each annealing time were characterized to tentatively build a framework enabling comparison of measured properties with results of others available in literature. XRD and Rietveld refinement of data give the evolution the lattice parameters as a function to x. Shrinkage of the lattice parameters with increasing x values was observed, the stability limit of the solid solution being determined by analysis of lattice parameters. The evolution of grain size and presence of secondary phases have been investigated by means of TEM, SEM, EDS and EBSD techniques. The dependencies of grain growth and regression of secondary phases on composition x and time were further characterized. Magnetic susceptibility of samples and magnetic irreversibility were extensively examined in the present work. The dependency of magnetic susceptibility, Neel ordering transition and important magnetic parameters are determined and compared to observation in other multiferroics in the following chapter of the thesis. As a tool of high sensitivity to detect minor traces of the secondary phase hausmannite, magnetic measurements are suggested for cross-checking of phase diagrams. Difficulty of previous studies on interpreting the magnetic anomaly below 43 K in h-RMnO3 oxides was discussed and assigned to the Mn3O4 phase, with supported of the electron microscopy. Magneto-electric coupling where AFM ordering is coupled to dielectric polarization is investigated as a function of x and of sintering condition via frequency and temperature dependent complex dielectric constant measurements in the final chapter of the thesis. Within the limits of solid solubility, the crystalline lattice of off-stoichiometric ceramics was shown to preserve the magneto-electric coupling at TN. It represents the first research work on magneto-electric coupling modified by vacancy doping to author’s knowledge. Studied lattices would reveal distortions at the atomic scale imposed by local changes of x dependent on sintering conditions which were widely inspected by using TEM/STEM methods, complemented with EDS and EELS spectroscopy all together to provide comprehensive information on cross coupling of distortions, inhomogeneity and electronic structure assembled and discussed in a specific chapter. Internal interfaces inside crystalline grains were examined. Qualitative explanations of the measured magnetic and ferroelectric properties were established in relation to observed nanoscale features of h-LuMnxO3±δ ceramics. Ferroelectric domains and topological defects are displayed both in TEM and AFM/PFM images, the later technique being used to look at size, distribution and switching of ferroelectric domains influenced by vacancy doping at the micron scale bridging to complementary TEM studies on the atomic structure of ferroelectric domains. In support to experimental study, DFT simulations using Wien2K code have been carried out in order to interpret the results of EELS spectra of O K-edge and to obtain information on the cation hybridization to oxygen ions. The L3,2 edges of Mn is used to access the oxidation state of the Mn ions inside crystalline grains. In addition, rehybridization driven ferroelectricity is also evaluated by comparing the partial density of states of the orbitals of all ions of the samples, also the polarization was calculated and correlated to the off-stoichiometric effect.
Resumo:
We describe a new geometry for electrostatic actuators to be used in sensitive laser interferometers, suited for prototype and table top experiments related to gravitational wave detection with mirrors of 100 g or less. The arrangement consists of two plates at the sides of the mirror (test mass), and therefore does not reduce its clear aperture as a conventional electrostatic drive (ESD) would do. Using the sample case of the AEI-10 m prototype interferometer, we investigate the actuation range and the influence of the relative misalignment of the ESD plates with respect to the test mass. We find that in the case of the AEI-10 m prototype interferometer, this new kind of ESD could provide a range of 0.28 mu m when operated at a voltage of 1 kV. In addition, the geometry presented is shown to provide a reduction factor of about 100 in the magnitude of the actuator motion coupling to the test mass displacement. We show that therefore in the specific case of the AEI-10 m interferometer, it is possible to mount the ESD actuators directly on the optical table without spoiling the seismic isolation performance of the triple stage suspension of the main test masses.