902 resultados para plate buckling, stability, plated structure, finite element method, air duct


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines theoretically and experimentally the behaviour of a temporary end plate connection for an aluminium space frame structure, subjected to static loading conditions. Theoretical weld failure criterions are derived from basic fundamentals for both tensile and shear fillet welds. Direct account of weld penetration is taken by incorporating it into a more exact poposed weld model. Theoretical relationships between weld penetration and weld failure loads, failure planes and failure lengths are derived. Also, the variation in strength between tensile and shear fillet welds is shown to be dependent upon the extent of weld penetration achieved/ The proposed tensile weld failure theory is extended to predict the theoretical failure of the welds in the end plate space frame connection. A finite element analysis is conducted to verify the assumptions made for this theory. Experimental hardness and tensile tests are conducted to substantiate the extent and severity of the heat affected zone in aluminium alloy 6082-T6. Simple transverse and longitudinal fillet welded specimens of the same alloy, are tested to failure. These results together with those of other authors are compared to the theoretical predictions made by the proposed weld failure theories and by those made using Kamtekar's and Kato and Morita's failure equations, the -formula and BS 8118. Experimental tests are also conducted on the temporary space frame connection. The maximum stresses and displacements recorded are checked against results obtained from a finite element analysis of the connection. Failure predictions made by the proposed extended weld failure theory, are compared against the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element process is now used almost routinely as a tool of engineering analysis. From early days, a significant effort has been devoted to developing simple, cost effective elements which adequately fulfill accuracy requirements. In this thesis we describe the development and application of one of the simplest elements available for the statics and dynamics of axisymmetric shells . A semi analytic truncated cone stiffness element has been formulated and implemented in a computer code: it has two nodes with five degrees of freedom at each node, circumferential variations in displacement field are described in terms of trigonometric series, transverse shear is accommodated by means of a penalty function and rotary inertia is allowed for. The element has been tested in a variety of applications in the statics and dynamics of axisymmetric shells subjected to a variety of boundary conditions. Good results have been obtained for thin and thick shell cases .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Finite Element Analysis (FEA) model is used to explore the relationship between clogging and hydraulics that occurs in Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) in the United Kingdom (UK). Clogging is assumed to be caused by particle transport and an existing single collector efficiency model is implemented to describe this behaviour. The flow model was validated against HSSF TW survey results obtained from the literature. The model successfully simulated the influence of overland flow on hydrodynamics, and the interaction between vertical flow through the low permeability surface layer and the horizontal flow of the saturated water table. The clogging model described the development of clogging within the system but under-predicted the extent of clogging which occurred over 15 years. This is because important clogging mechanisms were not considered by the model, such as biomass growth and vegetation establishment. The model showed the usefulness of FEA for linking hydraulic and clogging phenomenon in HSSF TWs and could be extended to include treatment processes. © 2011 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrically excited synchronous machines with brushes and slip rings are popular but hardly used in inflammable and explosive environments. This paper proposes a new brushless electrically excited synchronous motor with a hybrid rotor. It eliminates the use of brushes and slip rings so as to improve the reliability and cost-effectiveness of the traction drive. The proposed motor is characterized with two sets of stator windings with two different pole numbers to provide excitation and drive torque independently. This paper introduces the structure and operating principle of the machine, followed by the analysis of the air-gap magnetic field using the finite-element method. The influence of the excitation winding's pole number on the coupling capability is studied and the operating characteristics of the machine are simulated. These are further examined by the experimental tests on a 16 kW prototype motor. The machine is proved to have good static and dynamic performance, which meets the stringent requirements for traction applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two degrees of freedom (2-DOF) actuator capable of producing linear translation, rotary motion, or helical motion would be a desirable asset to the fields of machine tools, robotics, and various apparatuses. In this paper, a novel 2-DOF split-stator induction motor was proposed and electromagnetic structure pa- rameters of the motor were designed and optimized. The feature of the direct-drive 2-DOF induction motor lies in its solid mover ar- rangement. In order to study the complex distribution of the eddy current field on the ferromagnetic cylinder mover and the motor’s operating characteristics, the mathematical model of the proposed motor was established, and characteristics of the motor were ana- lyzed by adopting the permeation depth method (PDM) and finite element method (FEM). The analytical and numerical results from motor simulation clearly show a correlation between the PDM and FEM models. This may be considered as a fair justification for the proposed machine and design tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel rotor structure for high-speed interior permanent magnet motors to overcome huge centrifugal forces under high-speed operation. Instead of the conventional axial stacking of silicon-steel laminations, the retaining shield rotor is inter-stacked by high-strength stainless-steel plates to enhance the rotor strength against the huge centrifugal force. Both mechanical characteristics and electromagnetic behaviors of the retaining shield rotor are analyzed using finite-element method in this paper. Prototypes and experimental results are demonstrated to evaluate the performance. The analysis and test results show that the proposed retaining shield rotor could effectively enhance the rotor strength without a significant impact on the electromagnetic performance, while some design constraints should be compromised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Switched reluctance motors (SRMs) are gaining in popularity because of their robustness, low cost, and excellent high-speed characteristics. However, they are known to cause vibration and noise primarily due to the radial pulsating force resulting from their double-saliency structure. This paper investigates the effect of skewing the stator and/or rotor on the vibration reduction of the three-phase SRMs by developing four 12/8-pole SRMs, including a conventional SRM, a skewed rotor-SRM (SR-SRM), a skewed stator-SRM (SS-SRM), and a skewed stator and rotor-SRM (SSR-SRM). The radial force distributed on the stator yoke under different skewing angles is extensively studied by the finite-element method and experimental tests on the four prototypes. The inductance and torque characteristics of the four motors are also compared, and a control strategy by modulating the turn-ON and turn-OFF angles for the SR-SRM and the SS-SRM are also presented. Furthermore, experimental results validate the numerical models and the effectiveness of the skewing in reducing the motor vibration. Test results also suggest that skewing the stator is more effective than skewing the rotor in the SRMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigates a new structural system utilising modular construction. Five-sided boxes are cast on-site and stacked together to form a building. An analytical model was created of a typical building in each of two different analysis programs utilising the finite element method (Robot Millennium and ETABS). The pros and cons of both Robot Millennium and ETABS are listed at several key stages in the development of an analytical model utilising this structural system. Robot Millennium was initially utilised but created an analytical model too large to be successfully run. The computation requirements were too large for conventional computers. Therefore Robot Millennium was abandoned in favour of ETABS, whose more simplistic algorithms and assumptions permitted running this large computation model. Tips are provided as well as pitfalls signalled throughout the process of modelling such complex buildings of this type. ^ The building under high seismic loading required a new horizontal shear mechanism. This dissertation has proposed to create a secondary floor that ties to the modular box through the use of gunwales, and roughened surfaces with epoxy coatings. In addition, vertical connections necessitated a new type of shear wall. These shear walls consisted of waffled external walls tied through both reinforcement and a secondary concrete pour. ^ This structural system has generated a new building which was found to be very rigid compared to a conventional structure. The proposed modular building exhibited a period of 1.27 seconds, which is about one-fifth of a conventional building. The maximum lateral drift occurs under seismic loading with a magnitude of 6.14 inches which is one-quarter of a conventional building's drift. The deflected shape and pattern of the interstorey drifts are consistent with those of a coupled shear wall building. In conclusion, the computer analysis indicate that this new structure exceeds current code requirements for both hurricane winds and high seismic loads, and concomitantly provides a shortened construction time with reduced funding. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).