962 resultados para photoredox catalysis
Resumo:
Uma série de sete complexos alquil substituídos do tipo (RCp)2TiCl2 (R= H, etila, n-propila, iso-propila, n-butila, iso-amila, ciclo-hexila) foi preparada juntamente com o ainda inédito contendo R= sec-butila, e o efeito do substituinte na polimerização do estireno foi investigada à temperaturas de polimerização de 0 e 50 ºC. Foi encontrado que R = n-butila maximiza a produção de poliestireno sindiotático. Ligantes alquilas com R = RCH2- são superiores aos R = RR CH- e ao precursor Cp2TiCl2 na produção de poliestireno sindiotático de alto peso molecular.
Resumo:
É apresentada uma revisão bibliográfica com 42 referências abordando aspectos históricos dos compostos organometálicos de titânio, sua aplicação em sistemas catalíticos utilizando metalocenos de titânio e os fatores que influenciam a catálise de alfa-olefinas com as conseqüentes repercussões nas estruturas dos polímeros.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Titanocenos são catalisadores solúveis conhecidos para a polimerisação estereoespecífica de olefinas pró-quirais como o estireno. Nesse trabalho descrevemos as relações entre as características do poliestireno e a estrutura do precursor do catalisador, de fato aqueles da família (RCp)2TiCl2 (R = H, etila, iso-propila, n-propila, sec-butila, n-butila, iso-amila e ciclohexila). Todos os catalisadores são ativos para a produção de poliestireno acima de zero graus centígrados. A sindiotaticidade dos polímeros são dependentes da cadeia lateral dos anéis aromáticos do titanoceno e da temperatura da polimerização. A relação entre os fatores estéricos e eletrônicos do precursor do catalisador e os produtos de polimerização são apresentados e discutidos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Titanium oxide is a good candidate as new support for hydrotreating (HDT) catalysts, but has the inconvenience of presenting small surface area and poor thermal stability. To overcome these handicaps TiO2-Al2O3 mixed oxides were proposed as catalyst support. Here, the results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal complexing ratios [acac]/[Ti] and of sol aging temperature on the structural features of nanometric particles was analyzed by quasi-elastic light scattering (QELS) and N-2 adsorption isotherm measurements. These characterizations have shown that the addition of acac and the increase of aging temperature favor the full dispersion of primary nanoparticles in mother acid solution. The dried powder presents a monomodal distribution of slit-shaped micropores, formed by irregular packing of platelet primary particles, surface area superior to 200 m(2) g(-1) and mean pore size of about 1 nm. These characteristics of porous texture are preserved after firing at 673 K. The diffraction patterns of sample fired above 973 K show only the presence of anatase crystalline phase. The crystalline structure of the support remained unaltered after molybdenum adsorption, but the surface area and the micropore volume were drastically reduced. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
The synthesis, characterization and catalytic activity of the cationic iron porphyrins Fe[M(4-N-MePy)TDCPP]Cl-2 and Fe[M(4-N-MePy)TFPP]Cl-2 in the epoxidation of (Z)-cyclooctene by PhIO in homogeneous solution and supported on silica gel (SG), imidazole propyl gel (IPG) or SG modified with 2-(4-sulfonatophenyl)ethyl groups (SiSO3) have been accomplished. When supported on IPG, both cationic FeP bind to the support via Fe-imidazole coordination. Fe[M(4-N-MePy)TDCPP]IPG contains a mixture of low-spin bis-coordinated (FeP)-P-III and high-spin mono-coordinated (FeP)-P-III species, whereas Fe[M(4-N-MePy)TFPP]IPG only contains high-spin mono-coordinated (FeP)-P-III. These FePIPG catalysts also contain (FeP)-P-II species, whose presence was confirmed by EPR spectroscopy using NO as a paramagnetic probe. Both cationic FePs coordinate to SG through Fe-O ligation and they are present as high-spin (FeP)-P-III species. The cationic FePs supported on SiSO3- are also high-spin (FeP)-P-III species and they bind to the support via electrostatic interaction between the 4-N-methylpyridyl groups and the SO3- groups present on the matrix. In homogeneous solution, both Fe[M(4-N-MePy)TDCPP]Cl-2 and Fe[M(4-N-MePy)TFPP]Cl-2 have similar catalytic activity to Fe(TDCPP)Cl and Fe(TFPP)Cl, leading to cis-epoxycyclooctane yields of 92%. When supported on inorganic matrices,both FePs lead to epoxide yields comparable to their homogeneous analogues and their anchoring enables catalyst recovery and re-use. Recycling of Fe[M(4-N-MePy)TDCPP]SiSO3- shows that this FeP maintains its activity in a second reaction. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The selectivity of I-hexene metathesis using WCI6 as catalyst was evaluated with a series of hydrosilane-compounds as cocatalysts: Ph3SiH, Ph2SiH2, PhSiH3 and polymethylhydrosiloxane (PMHS). The metathesis reaction is favored by the addition of promoters. When in the presence of WCl4(OAr)(2), OAr = 2,6-dichlorophenoxide, 2,6-difluorophenoxide, olefin metathesis occurs with good selectivity without the use of promoters. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
The dielectric permittivity of Na0.80K0.20NbO3 ceramic was investigated by impedance spectroscopy. The dielectric characterization was performed from room temperature to 800 degreesC, in the frequency range 5 Hz-13 MHz. The bulk permittivity was derived by the variation of the imaginary part of the impedance as a function of reciprocal angular frequency. The permittivity values as a function of temperature showed two maxima. The first maximum is very similar at 200degreesC and the second one positioned at around 400degreesC, which was associated to Curie's temperature. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency dispersion was investigated in terms of dielectric loss. The Na0.80K0.20NbO3 showed a dissipation factor between 5 and 40 over a frequency range from 1 to 10(2) kHz. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The reactivity of the mer-[RuCl3(dppb)H2O] complex (1) with di-hydrogen shows that the products formed depend on the conditions of the reaction, i.e., solvents and presence or absence of a base. The new mixed-valence complexes [(diop)ClRu-(h-Cl)(3)-RuCl(dppb)] (3), [(binap)CIRu-(p-Cl)(3)-RuCl(dppb)] (4), [(PPh3)(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (6), [(dppn)ClRu-(mu-Cl)(3)-RuCl(dppb)] (7), [(P-ptol(3))(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (8), [(SbPh3)(2)ClRu-(mu-Cl)(3)-RuCl(dppb)] (9), [(eta(6)-C6H6)Ru-(mu-Cl)(3)-RuCl(dppb)] (11) and the known mixed-valence [(dppb)CIRu-(mu-Cl)(3)-RuCl(dppb)] (5) and [(diop)ClRu-(mu-Cl)(3)-RuCl(diop)] (10) were synthesized from complexes (1) or (2) using a methodology developed in our research group. The known complexes [(dppb)ClRu-(mu-Cl)(2)-RuCl(dppb)] (12), [(dppb)(CO)Ru-(mu-Cl)(3)-RuCl(dppb)] (13) and [H2NEt2][(dppb)ClRu-(mu-Cl)(3)-RuCl(dppb)] (14) were synthesized by changing the reaction conditions between mer-[RuCl3(dppb)H2O] (1) and dihydrogen. The crystal structures of (5) and (11) were determined by single-crystal X-ray diffraction. Some of the complexes described here are effective pre-catalysts for the hydrogenation of imines. Preliminary results on the homogeneous hydrogenation of the imines Ph-CH2-N=CH-Ph and Ph-N=CH-Ph are presented. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the synthesis of a first-generation iron porphyrin catalyst entrapped in a silica matrix by the sol-gel route, leading to spherical particles. The catalyst was synthesized by the method of Stober, through hydrolysis and condensation of the alkoxysilane TEOS in a mixture of alcohol, water and ammonia, in the presence of the iron porphyrin Fe(TPP)Cl. The relation between particle morphology and catalytic activity of the different Fe(TPP)-SiO2, obtained using different H2O/silane molar ratios and ammonia concentrations in the xerogel syntheses, was studied.The obtained catalysts were characterized by UV-vis spectroscopy, NMR Si-29. thermogravimetric analysis and transmission electron microscopy. Their ability to catalyze (Z)-cyclooctene epoxidation and cyclohexane oxidation was tested using iodosylbenzene as oxygen donor; the oxidation products were analyzed by gas chromatography and the catalysts obtained in a form of particles spherical and monodispersed showed to be a promising catalytic system for selective oxidation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Envenomation by arachnids of the genus Loxosceles leads to local dermonecrosis and serious systemic toxicity mainly induced by sphingomyelinases D (SMase D). These enzymes catalyze the hydrolysis of sphingomyelin resulting in the formation of ceramide-phosphate and choline as well as the cleavage of lysophosphatidyl choline generating the lipid mediator lysophosphatidic acid. We have, previously, cloned and expressed two functional SMase D isoforms, named P1 and P2, from Loxosceles intertnedia venom and comparative protein sequence analysis revealed that they are highly homologous to SMase I from Loxosceles laeta which folds to form an (alpha/beta)(8) barrel. In order to further characterize these proteins, pH dependence kinetic experiments and chemical modification of the two active SMases D isoforms were performed. We show here that the amino acids involved in catalysis and in the metal ion binding sites are strictly conserved in the SMase D isoforms from L. intermedia. However, the kinetic studies indicate that SMase P1 hydrolyzes sphingomyelin less efficiently than P2, which can be attributed to a substitution at position 203 (Pro-Leu) and local amino acid substitutions in the hydrophobic channel that could probably play a role in the substrate recognition and binding. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. However, no new classes of drugs for TB have been developed in the past 30 years. Therefore there is an urgent need to develop faster acting and effective new antitubercular agents, preferably belonging to new structural classes, to better combat TB, including MDR-TB, to shorten the duration of current treatment to improve patient compliance, and to provide effective treatment of latent tuberculosis infection. The enzymes in the shikimate pathway are potential targets for development of a new generation of antitubercular drugs. The shikimate pathway has been shown by disruption of aroK gene to be essential for the Mycobacterium tuberculosis. The shikimate kinase (SK) catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid (shikimate) using ATP as a co-substrate. SK belongs to family of nucleoside monophosphate (NMP) kinases. The enzyme is an alpha/beta protein consisting of a central sheet of five parallel beta-strands flanked by alpha-helices. The shikimate kinases are composed of three domains: Core domain, Lid domain and Shikimate-binding domain. The Lid and Shikimate-binding domains are responsible for large conformational changes during catalysis. More recently, the precise interactions between SK and substrate have been elucidated, showing the binding of shikimate with three charged residues conserved among the SK sequences. The elucidation of interactions between MtSK and their substrates is crucial for the development of a new generation of drugs against tuberculosis through rational drug design.