994 resultados para photonic crystal laser
Resumo:
A theory is presented to explain the statistical properties of the growth of dye-laser radiation. Results are in agreement with recent experimental findings. The different roles of pump-noise intensity and correlation time are elucidated.
Resumo:
Stress-strain trajectories associated with pseudoelastic behavior of a Cu¿19.4 Zn¿13.1 Al (at.%) single crystal at room temperature have been determined experimentally. For a constant cross-head speed the trajectories and the associated hysteresis behavior are perfectly reproducible; the trajectories exhibit memory properties, dependent only on the values of return points, where transformation direction is reverted. An adapted version of the Preisach model for hysteresis has been implemented to predict the observed trajectories, using a set of experimental first¿order reversal curves as input data. Explicit formulas have been derived giving all trajectories in terms of this data set, with no adjustable parameters. Comparison between experimental and calculated trajectories shows a much better agreement for descending than for ascending paths, an indication of a dissymmetry between the dissipation mechanisms operative in forward and reverse directions of martensitic transformation.
Resumo:
BACKGROUND: Deep burn assessment made by clinical evaluation has an accuracy varying between 60% and 80% and will determine if a burn injury will need tangential excision and skin grafting or if it will be able to heal spontaneously. Laser Doppler Imaging (LDI) techniques allow an improved burn depth assessment but their use is limited by the time-consuming image acquisition which may take up to 6 min per image. METHODS: To evaluate the effectiveness and reliability of a newly developed full-field LDI technology, 15 consecutive patients presenting with intermediate depth burns were assessed both clinically and by FluxExplorer LDI technology. Comparison between the two methods of assessment was carried out. RESULTS: Image acquisition was done within 6 s. FluxEXPLORER LDI technology achieved a significantly improved accuracy of burn depth assessment compared to the clinical judgement performed by board certified plastic and reconstructive surgeons (P < 0.05, 93% of correctly assessed burns injuries vs. 80% for clinical assessment). CONCLUSION: Technological improvements of LDI technology leading to a decreased image acquisition time and reliable burn depth assessment allow the routine use of such devices in the acute setting of burn care without interfering with the patient's treatment. Rapid and reliable LDI technology may assist clinicians in burn depth assessment and may limit the morbidity of burn patients through a minimization of the area of surgical debridement. Future technological improvements allowing the miniaturization of the device will further ease its clinical application.
Resumo:
BACKGROUND AND OBJECTIVE: Theoretically myocardial angiogenesis of laser injury can be further enhanced by the addition of angiogenic growth factors. The influence of the way of administration of these factors on vascular growth around the channels is still unclear. MATERIALS AND METHODS: 18 pigs (mean weight 72 +/- 5.2 kg) were randomized to either triads of transmyocardial laser revascularization (TMLR) channels (group 1, n = 6) or isolated channels (group 2, n = 6), or a control group (n = 6). The animals had injections of bovine bone derived growth factor mixture either in the center of the triads in group 1 or within the channels themselves in group 2. Animals were sacrificed one month later for histological analysis. RESULTS: The vascular densities of myocardial areas within the triads of group 1 and around the channels in group 2 were significantly larger than in the control group: 15.2 +/- 3.7/mm2 and 14.2 +/- 3.5/mm2 respectively vs 5.3 +/- 1.6/mm2 (p < 0.001 for both differences). Differences of densities between group 1 and 2 were not statistically significant (p = 0.6). CONCLUSIONS: In this porcine model, the addition of a bovine bone derived growth factor mixture to TMLR significantly stimulates angiogenesis in the areas adjacent to the channels. The place of injection does not influence the angiogenesis intensity.
Resumo:
To determine self‐consistently the time evolution of particle size and their number density in situ multi‐angle polarization‐sensitive laser light scattering was used. Cross‐polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135° and ex situ transmission electronic microscopy analysis demonstrate the existence of nonspherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross‐polarization intensities is accompanied by low‐frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian free molecule coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian free molecule coagulation model including a log‐normal particle size distribution.
Resumo:
In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρc ∼ 10 mΩ cm2) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.
Resumo:
Calcium phosphate coatings, obtained at different deposition rates by pulsed laser deposition with a Nd:YAG laser beam of 355-nm wavelength, were studied. The deposition rate was changed from 0.043 to 1.16 /shot by modification of only the ablated area, maintaining the local fluence constant to perform the ablation process in similar local conditions. Characterization of the coatings was performed by scanning electron microscopy, x-ray diffractometry, and infrared, micro-Raman, and x-ray photoelectron spectroscopy. The coatings showed a compact surface morphology formed by glassy gains with some droplets on them. Only hydroxyapatite (HA) and alpha-tricalcium phosphate (alpha-TCP) peaks were found in the x-ray diffractograms. The relative content of alpha TCP diminished with decreasing deposition rates, and only HA peaks were found for the lowest rate. The origin of alpha TCP is discussed.
Resumo:
The interconnected porosity of the Cr3C2-NiCr coatings obtained by high-velocity oxy fuel spraying is detrimental in corrosion and wear resistance applications. Laser treatments allow sealing of their surfaces through melting and resolidification of a thin superficial layer. A Nd:YAG laser beam was used to irradiate Cr3C2-NiCr coatings either in the continuous wave mode or at different repetition rates in the pulsed one. Results indicated that high peak and low mean laser irradiances are not good, since samples presented deep grooves and an extensive crack network. At low peak and higher mean laser irradiances the surface was molten, and only a few shallow cracks were observed. The interconnected porosity was completely eliminated in a layer up to 80 m thick, formed by large Cr7C3 grains imbedded in a NiCr matrix.
Resumo:
The plume generated by ablation of hydroxyapatite targets under ArF excimer laser irradiation has been investigated by means of fast intensified CCD-imaging and optical emission spectroscopy. Results have shown that the plume splits into two plasma clouds as it expands. Time and spatial resolved spectra have revealed that under the experiment conditions emission is mostly due to calcium neutral atoms and calcium oxide molecular radicals. Imaging of the plume with the aid of bandpass filters has demonstrated that the emissive species in the larger and faster plasma cloud are calcium neutral atoms, whereas in the smaller and slower one they are calcium oxide molecular radicals
Resumo:
ArF excimer laser pulses (193 nm, 20 ns, 150 mJ) have been focused on a hydroxyapatite (HA) target in similar conditions to those normally used for thin film deposition. Fast intensified CCD images of HA laser ablation plumes have been taken in vacuum and under different water vapor pressures ranging from 0.01 mbar to 1 mbar. Images of HA ablation in vacuum have shown a plume freely expanding at a constant velocity of 2.3 106 cm/s. HA ablation under a water vapor pressure of 0.01 mbar has revealed an expansion behavior very similar to that of ablation in vacuum. Images taken under a water vapor pressure of 0.1 mbar have shown the formation of a shock structure in the plume. Finally, HA ablation under a water vapor pressure of 1 mbar has revealed the development of some irregularities in the shape of the plume.
Resumo:
A laser-based technique for printing transparent and weakly absorbing liquids is developed. Its principle of operation relies in the tight focusing of short laser pulses inside the liquid and close to its free surface, in such a way that the laser radiation is absorbed in a tiny volume around the beam waist, with practically no absorption in any other location along the beam path. If the absorbed energy overcomes the optical breakdown threshold, a cavitation bubble is generated, and its expansion results in the propulsion of a small fraction of liquid which can be collected on a substrate, leading to the printing of a microdroplet for each laser pulse. The technique does not require the preparation of the liquid in thin film form, and its forward mode of operation imposes no restriction concerning the optical properties of the substrate. These characteristics make it well suited for printing a wide variety of materials of interest in diverse applications. We demonstrate that the film-free laser forward printing technique is capable of printing microdroplets with good resolution, reproducibility and control, and analyze the influence of the main process parameter, laser pulse energy. The mechanisms of liquid printing are also investigated: time-resolved imaging provides a clear picture of the dynamics of liquid transfer which allows understanding the main features observed in the printed droplets.
Resumo:
The development of liquid-crystal panels for use in commercial equipment has been aimed at improving the pixel resolution and the display efficiency. These improvements have led to a reduction in the thickness of such devices, among other outcomes, that involves a loss in phase modulation. We propose a modification of the classical phase-only filter to permit displays in VGA liquid-crystal panels with a constant amplitude modulation and less than a 2¿(PI) phase modulation. The method was tested experimentally in an optical setup.
Resumo:
The expansion dynamics of the ablation plume generated by KrF laser irradiation of hydroxyapatite targets in a 0.1 mbar water atmosphere has been studied by fast intensified charge coupled device imaging with the aid of optical bandpass filters. The aim of the filters is to isolate the emission of a single species, which allows separate analysis of its expansion. Images obtained without a filter revealed two emissive components in the plume, which expand at different velocities for delay times of up to 1.1 ¿s. The dynamics of the first component is similar to that of a spherical shock wave, whereas the second component, smaller than the first, expands at constant velocity. Images obtained through a 520 nm filter show that the luminous intensity distribution and evolution of emissive atomic calcium is almost identical to those of the first component of the total emission and that there is no contribution from this species to the emission from the second component of the plume. The analysis through a 780 nm filter reveals that atomic oxygen partially diffuses into the water atmosphere and that there is a contribution from this species to the emission from the second component. The last species studied here, calcium oxide, was analyzed by means of a 600 nm filter. The images revealed an intensity pattern more complex than those from the atomic species. Calcium oxide also contributes to the emission from the second component. Finally, all the experiments were repeated in a Ne atmosphere. Comparison of the images revealed chemical reactions between the first component of the plume and the water atmosphere.