967 resultados para peak separation
Resumo:
The comparison of three ionic liquid-mediated catalytic processes for the benzoylation of anisole with benzoic anhydride is presented. A detailed understanding of the mechanism by which the zeolite and metal triflate reactions in bis{trifluoromethanesulfonyl}imide-based ionic liquids has been reported previously, and these routes are considered together with an indium chloride-based ionic liquid system. Solvent extraction and vacuum/steam distillation have been assessed as possible workup procedures, and an overall preliminary economic evaluation of each overall process is reported. Although the predominant activity is associated with the in situ formation of a homogeneous acid catalyst, the low cost and facile separation of the zeolite-catalysed process leads to this route being the most economically viable overall option. The results of a continuous flow miniplant based on the zeolite catalyst are also presented and compared with the reaction using a small plug How reactor.
Resumo:
Perovskite phase instability of BiMnO3 has been exploited to synthesize epitaxial metal oxide magnetic nanocrystals. Thin film processing conditions are tuned to promote the breakdown of the perovskite precursor into Bi2O3 matrix and magnetic manganese oxide islands. Subsequent cooling in vacuum ensures complete volatization of the Bi2O3, thus leaving behind an array of self-assembled magnetic Mn3O4 nanostructures. Both shape and size can be systematically controlled by the ambient oxygen environments and deposition time.As such, this approach can be extended to any other Bi-based complex ternary oxide system as it primarily hinges on the breakdown of parent Bi-based precursor and subsequent Bi2O3 volatization.
Resumo:
In order to introduce specificity for Mycobacterium avium subsp. paratuberculosis prior to a phage amplification assay, various magnetic-separation approaches, involving either antibodies or peptides, were evaluated in terms of the efficiency of capture (expressed as a percentage) of M. avium subsp. paratuberculosis cells and the percentage of nonspecific binding by other Mycobacterium spp. A 50:50 mixture of MyOne Tosylactivated Dynabeads coated with the chemically synthesized M. avium subsp. paratuberculosis-specific peptides biotinylated aMp3 and biotinylated aMptD (i.e., peptide-mediated magnetic separation [PMS]) proved to be the best magnetic-separation approach for achieving 85 to 100% capture of M. avium subsp. paratuberculosis and minimal (<1%) nonspecific recovery of other Mycobacterium spp. (particularly if beads were blocked with 1% skim milk before use) from broth samples containing 103 to 104 CFU/ml. When PMS was coupled with a recently optimized phage amplification assay and used to detect M. avium subsp. paratuberculosis in 50-ml volumes of spiked milk, the mean 50% limit of detection (LOD50) was 14.4 PFU/50 ml of milk (equivalent to 0.3 PFU/ml). This PMS-phage assay represents a novel, rapid method for the detection and enumeration of viable M. avium subsp. paratuberculosis organisms in milk, and potentially other sample matrices, with results available within 48 h.
Resumo:
Methods of measuring the acoustic behavior of tubular systems can be broadly characterized as steady state measurements, where the measured signals are analyzed in terms of infinite duration sinusoids, and reflectometry measurements which exploit causality to separate the forward and backward going waves in a duct. This paper sets out a multiple microphone reflectometry technique which performs wave separation by using time domain convolution to track the forward and backward going waves in a cylindrical source tube. The current work uses two calibration runs (one for forward going waves and one for backward going waves) to measure the time domain transfer functions for each pair of microphones. These time domain transfer functions encode the time delay, frequency dependent losses and microphone gain ratios for travel between microphones. This approach is applied to the measurement of wave separation, bore profile and input impedance. The work differs from existing frequency domain methods in that it combines the information of multiple microphones within a time domain algorithm, and differs from existing time domain methods in its inclusion of the effect of losses and gain ratios in intermicrophone transfer functions.
Resumo:
In the present study, the activated carbon is produced using phosphoric acid treatment of the waste bamboo scaffolding and activated at either 400 or 600 °C. The effect of acid to bamboo ratio (Xp) up to 2.4 has been studied. The BET surface area increased with increasing Xp and activating temperature. BET surface area up to 2500 m2/g carbon has been produced. In order to simulate effluent treatment from textile industry, the produced carbon was tested for its dye adsorption capacities. Two acid dyes with different molecular sizes were used, namely Acid Yellow 117 (AY117) and Acid Blue 25 (AB25). In a single component system, it was found that dye with smaller molecular size, AB25, was readily adsorbed onto the carbon while the larger size dye, AY117, showed little adsorption. As a result, it is possible to tailor-make the carbon for the adsorption of dye mixtures in industrial applications, especially textile dyeing, i.e. molecular sieve effect. A binary AY117–AB25 mixture was used to test the possibility of the molecular sieve effect. Furthermore, experimental results were fitted to equilibrium isotherm models, Langmuir, Freundlich and Sips for the single component system. For the binary component system, extended single-component equilibrium isotherm models were used to predict the experimental data.
Resumo:
A variety of short time delays inserted between pairs of subjects were found to affect their ability to synchronize a musical task. The subjects performed a clapping rhythm together from separate sound-isolated rooms via headphones and without visual contact. One-way time delays between pairs were manipulated electronically in the range of 3 to 78 ms. We are interested in quantifying the envelope of time delay within which two individuals produce synchronous per- formances. The results indicate that there are distinct regimes of mutually coupled behavior, and that `natural time delay'o¨delay within the narrow range associated with travel times across spatial arrangements of groups and ensembleso¨supports the most stable performance. Conditions outside of this envelope, with time delays both below and above it, create characteristic interaction dynamics in the mutually coupled actions of the duo. Trials at extremely short delays (corresponding to unnaturally close proximity) had a tendency to accelerate from anticipation. Synchronization lagged at longer delays (larger than usual physical distances) and produced an increasingly severe deceleration and then deterioration of performed rhythms. The study has implications for music collaboration over the Internet and suggests that stable rhythmic performance can be achieved by `wired ensembles' across distances of thousands of kilometers.