888 resultados para parenthood in transition
Resumo:
We have investigated the effect of mixing spontaneously formed dispersions of the cationic vesicle-forming dioctadecyldimethylammonium chloride and bromide (DODAX, with X being anions Cl- (C) or Br- (B)) with solutions of the micelle-forming nonionic ethylene oxide surfactants penta-, hepta-, and octaethyleneglycol mono-n-dodecyl ether, C12En (n = 5, 7, and 8), and the zwitterionic 3-(N-hexadecyl-N,N-dimethylammonio)propane sulfonate (HPS). We used for this purpose differential scanning calorimetry (DSC), turbidity, and steady-state fluorescence spectroscopy to investigate the vesicle-micelle (V-M) transition yielded by adding C12En and HPS to 1.0 mM vesicle dispersions of DODAC and DODAB. The addition of these surfactants lowers the gel-to-liquid crystalline phase transition temperature (T-m) of DODAC and DODAB, and the transition becomes less cooperative, that is, the thermogram transition peak shifts to lower temperature and broadens to disappear when the V-M transition is complete, the vesicle bilayer becomes less organized, and the T., decreases, in agreement with measurements of the fluorescence quantum yield of trans-diphenylpolyene (t-DPO) fluorescence molecules incorporated in the vesicle bilayer. Turbidity data indicate that the V-M transition comes about in three stages: first surfactants are solubilized into the vesicle bilayer; after saturation, the vesicles are ruptured, and, finally, the vesicles are completely solubilized and only mixed micelles are formed. The critical points of bilayer saturation and vesicle solubilization were obtained from the turbidity and fluorescence curves, and are reported in this communication. The solubility of DODAX is stronger for C12En than it is for HPS, meaning that C12En solubilizes DODAX more efficiently than does HPS. The surfactant solubilization depends slightly on the counterion, and varies according to the sequence C12E5 > C12E7 > C12E8 > HPS.
Resumo:
We have used isothermal titration calorimetry to investigate the vesicle-to-micelle transition in dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) vesicle dispersions induced by the nonionic surfactant octaethylene glycol n-dodecyl monoether (C12E8) at room temperature. Small and giant unilamellar vesicles were prepared by sonication and without sonication, respectively, of the pure cationic surfactants at low concentrations in water. The titration of 1.0 mM DODAX (X = Cl- and Br-) by a concentrated micellar solution of C12E8 shows that the enthalpy of interaction (DeltaH(obs)) of C12E8 in micellar form with DODAX is always endothermic. The titration curves are understood on the basis of superposition of the enthalpies of partitioning of C12E8 into the bilayer, of micelle formation and of vesicle-to-micelle transformation. The enthalpy, DeltaH(obs), initially increases owing to the incorporation of C12E8 into the vesicle bilayer until the C12E8/DODAX saturation ratio (R-sat) is reached, then DeltaH(obs) decreases, in different ways for DODAB and DODAC, owing to degradation of vesicles and formation of mixed micelles and intermediary structures up to the C12E8/DODAX solubilization ratio, R-sol. Above R-sol only mixed micelles exist. The surfactant solubilization takes place in three stages. All the critical ratios are lower for DODAB than for DODAC, meaning that C12E8 solubilizes more strongly in DODAB for example, R-sat is 0.8 for DODAB and 1.2 for DODAC. Sonication has no significant effect on the transition.
Resumo:
The effects of mildly acidic conditions on the free energy of unfolding (Delta G(u)(buff)) of the pore-forming alpha-hemolysin (alpha HL) from Staphylococcus aureus were assessed between pH 5.0 and 7.5 by measuring intrinsic tryptophan fluorescence, circular dichroism and elution time in size exclusion chromatography during urea denaturation, Decreasing the pH from 7.0 to 5.0 reduced the calculated Delta G(u)(buff) from 8.9 to 4.2 kcal moI(-1), which correlates with an increased rate of pore formation previously observed over the same pH range, It is proposed that the lowered surface pH of biological membranes reduces the stability of alpha HL thereby modulating the rate of pore formation. (C) 1999 Federation of European Biochemical Societies.
Resumo:
The gel to liquid crystalline phase transition of the double-chained cationic dioctadecyldimethylammonium chloride and bromide (DODAX, X = Cl- or Br-) in aqueous vesicle dispersions prepared by non-sonication, sonication and extrusion has been investigated using high-sensitivity differential scanning calorimetry (DSC). The transition temperature (T-m) is a function of the preparation method, amphiphile concentration, vesicle curvature and nature of the counterion. DSC thermograms for DODAB and DODAC non-sonicated vesicle dispersions exhibit a single endothermic peak at T-m roughly independent of concentration up to 10 mM. Extrusion broadens the transition peak and shifts T-m downwards. Sonication, however, broadens slightly the transition peak and tends to shift T-m upwards suggesting that extrusion and sonication form vesicles with different characteristics. DODAC always exhibits higher T-m than DODAB irrespective of the preparation method. T-m changes as follows: T-m (sonicated) greater than or equal to T-m (non-sonicated) > T-m (extruded). Hysteresis of about 7 degrees C was observed for DODAB vesicle dispersions. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
In this study we simulate numerically the Reynolds' experiment for the transition from laminar to turbulent flow in a pipe. We present a discussion of the results from a dynamical systems perspective when a control parameter, the Reynolds number, is increased. The Landau scenario, where the transition is described by the excitation of infinite oscillatory modes within the fluid, is not observed. Instead what happens is best explained by the Ruelle-Takens scenario in terms of strange attractors. The Lyapunov exponent and fractal dimension for the attractor are calculated together with a measure of complex behaviour called the Lempel-Ziv complexity. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
We predict the loss of superfluidity in a Bose-Einstein condensate (BEC) trapped in a combined optical and axially-symmetric harmonic potentials during a resonant collective excitation initiated by a periodic modulation of the atomic scattering length a, when the modulation frequency equals twice the radial trapping frequency or multiples thereof. This classical dynamical transition is marked by a loss of superfluidity in the BEC and a subsequent destruction of the interference pattern upon free expansion. Suggestion for future experiment is made. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We investigate the mixing-demixing transition and the collapse in a quasi-two-dimensional degenerate boson-fermion mixture (DBFM) with a bosonic vortex. We solve numerically a quantum-hydrodynamic model based on a new density functional which accurately takes into account the dimensional crossover. It is demonstrated that with the increase of interspecies repulsion, a mixed state of DBFM could turn into a demixed state. The system collapses for interspecies attraction above a critical value which depends on the vortex quantum number. For interspecies attraction just below this critical limit there is almost complete mixing of boson and fermion components. Such mixed and demixed states of a DBFM could be experimentally realized by varying an external magnetic field near a boson-fermion Feshbach resonance, which will result in a continuous variation of interspecies interaction.
Resumo:
We predict a dynamical: classical superfluid-insulator transition in a Bose-Einstein condensate (BEC) trapped in combined optical and axially symmetrical harmonic potentials initiated by the periodic modulation of the radial trapping potential. The transition is marked by a loss of phase coherence in the BEC and a subsequent destruction of the interference pattern upon free:expansion. For a weak modulation of the radial potential the phase coherence is maintained. For a stronger modulation and a longer holding time in the modulated trap, the phase coherence is destroyed thus signalling a classical superfluid-insulator transition. The results are illustrated by a complete numerical solution of the axially symmetrical mean-field Gross-Pitaevskii equation for a repulsive BEC. Suggestions for future experimentation are-made.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Electroweak transition form factors of heavy meson decays are important ingredients in the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements from experimental data. In this work, within a. light-front framework, we calculate electroweak transition form factor for the semileptonic decay of D mesons into a pion or a kaon. The model results underestimate in both cases the new data of CLEO for the larger momentum transfers accessible in the experiment. We discuss possible reasons for that in order to improve the model.
Resumo:
Here we present a system of coupled phase oscillators with nearest neighbors coupling, which we study for different boundary conditions. We concentrate at the transition to the total synchronization. We are able to develop exact solutions for the value of the coupling parameter when the system becomes completely synchronized, for the case of periodic boundary conditions as well as for a chain with fixed ends. We compare the results with those calculated numerically.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)