882 resultados para parallel processing systems
Resumo:
The concepts of on-line transactional processing (OLTP) and on-line analytical processing (OLAP) are often confused with the technologies or models that are used to design transactional and analytics based information systems. This in some way has contributed to existence of gaps between the semantics in information captured during transactional processing and information stored for analytical use. In this paper, we propose the use of a unified semantics design model, as a solution to help bridge the semantic gaps between data captured by OLTP systems and the information provided by OLAP systems. The central focus of this design approach is on enabling business intelligence using not just data, but data with context.
Resumo:
A parallel formulation of an algorithm for the histogram computation of n data items using an on-the-fly data decomposition and a novel quantum-like representation (QR) is developed. The QR transformation separates multiple data read operations from multiple bin update operations thereby making it easier to bind data items into their corresponding histogram bins. Under this model the steps required to compute the histogram is n/s + t steps, where s is a speedup factor and t is associated with pipeline latency. Here, we show that an overall speedup factor, s, is available for up to an eightfold acceleration. Our evaluation also shows that each one of these cells requires less area/time complexity compared to similar proposals found in the literature.
Resumo:
Polymers are used in many everyday technologies and their degradation due to environmental exposure has lead to great interest in materials which can heal and repair themselves. In order to design new self healing polymers it's important to understand the fundamental healing mechanisms behind the material.Healable Polymer Systems will outline the key concepts and mechanisms underpinning the design and processing of healable polymers, and indicate potential directions for progress in the future development and applications of these fascinating and potentially valuable materials. The book covers the different techniques developed successfully to date for both autonomous healable materials (those which do not require an external stimulus to promote healing) and rehealable or remendable materials (those which only recover their original physical properties if a specific stimulus is applied). These include the encapsulated-monomer approach, reversible covalent bond formation, irreversible covalent bond formation and supramolecular self-assembly providing detailed insights into their chemistry.Written by leading experts, the book provides polymer scientists with a compact and readily accessible source of reference for healable polymer systems.
Resumo:
Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment.
Resumo:
Multicellularity evolved well before 600 million years ago, and all multicellular animals have evolved since then with the need to protect against pathogens. There is no reason to expect their immune systems to be any less sophisticated than ours. The vertebrate system, based on rearranging immunoglobulin-superfamily domains, appears to have evolved partly as a result of chance insertion of RAG genes by horizontal transfer. Remarkably sophisticated systems for expansion of immunological repertoire have evolved in parallel in many groups of organisms. Vaccination of invertebrates against commercially important pathogens has been empirically successful, and suggests that the definition of an adaptive and innate immune system should no longer depend on the presence of memory and specificity, since these terms are hard to define in themselves. The evolution of randomly-created immunological repertoire also carries with it the potential for generating autoreactive specificities and consequent autoimmune damage.While invertebrates may use systems analogous to ours to control autoreactive specificities, they may have evolved alternative mechanisms which operate either at the level of individuals-within-populations rather than cells-within-individuals, by linking self-reactive specificities to regulatory pathways and non-self-reactive to effector pathways.
Resumo:
In this paper, we present a polynomial-based noise variance estimator for multiple-input multiple-output single-carrier block transmission (MIMO-SCBT) systems. It is shown that the optimal pilots for noise variance estimation satisfy the same condition as that for channel estimation. Theoretical analysis indicates that the proposed estimator is statistically more efficient than the conventional sum of squared residuals (SSR) based estimator. Furthermore, we obtain an efficient implementation of the estimator by exploiting its special structure. Numerical results confirm our theoretical analysis.
Resumo:
In wireless communication systems, all in-phase and quadrature-phase (I/Q) signal processing receivers face the problem of I/Q imbalance. In this paper, we investigate the effect of I/Q imbalance on the performance of multiple-input multiple-output (MIMO) maximal ratio combining (MRC) systems that perform the combining at the radio frequency (RF) level, thereby requiring only one RF chain. In order to perform the MIMO MRC, we propose a channel estimation algorithm that accounts for the I/Q imbalance. Moreover, a compensation algorithm for the I/Q imbalance in MIMO MRC systems is proposed, which first employs the least-squares (LS) rule to estimate the coefficients of the channel gain matrix, beamforming and combining weight vectors, and parameters of I/Q imbalance jointly, and then makes use of the received signal together with its conjugation to detect the transmitted signal. The performance of the MIMO MRC system under study is evaluated in terms of average symbol error probability (SEP), outage probability and ergodic capacity, which are derived considering transmission over Rayleigh fading channels. Numerical results are provided and show that the proposed compensation algorithm can efficiently mitigate the effect of I/Q imbalance.
Resumo:
In practice, all I/Q signal processing receivers face the problem of I/Q imbalance. In this paper, we investigate the effect of I/Q imbalance on the performance of MIMO maximal ratio combining (MRC) systems that perform the combining at the radio frequency (RF) level, thereby requiring only one RF chain. Based on a system modeling that takes the I/Q imbalance into account, we evaluate the performance in terms of average symbol error probability (SEP), outage probability and system capacity, which are derived considering transmission over uncorrelated Rayleigh fading channels. Numerical results are provided to illustrate the effects of system parameters, such as the image- leakage ratio, numbers of transmit and receive antennas, and modulation order of quadrature amplitude modulation (QAM), on the system performance.
Resumo:
Background: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. Results: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2 of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2) units (6 of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. Conclusions: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells.
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV
Resumo:
We have optimised the atmospheric radiation algorithm of the FAMOUS climate model on several hardware platforms. The optimisation involved translating the Fortran code to C and restructuring the algorithm around the computation of a single air column. Instead of the existing MPI-based domain decomposition, we used a task queue and a thread pool to schedule the computation of individual columns on the available processors. Finally, four air columns are packed together in a single data structure and computed simultaneously using Single Instruction Multiple Data operations. The modified algorithm runs more than 50 times faster on the CELL’s Synergistic Processing Elements than on its main PowerPC processing element. On Intel-compatible processors, the new radiation code runs 4 times faster. On the tested graphics processor, using OpenCL, we find a speed-up of more than 2.5 times as compared to the original code on the main CPU. Because the radiation code takes more than 60% of the total CPU time, FAMOUS executes more than twice as fast. Our version of the algorithm returns bit-wise identical results, which demonstrates the robustness of our approach. We estimate that this project required around two and a half man-years of work.
Resumo:
Global communication requirements and load imbalance of some parallel data mining algorithms are the major obstacles to exploit the computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication cost in iterative parallel data mining algorithms. In particular, the analysis focuses on one of the most influential and popular data mining methods, the k-means algorithm for cluster analysis. The straightforward parallel formulation of the k-means algorithm requires a global reduction operation at each iteration step, which hinders its scalability. This work studies a different parallel formulation of the algorithm where the requirement of global communication can be relaxed while still providing the exact solution of the centralised k-means algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real world distributed applications or can be induced by means of multi-dimensional binary search trees. The approach can also be extended to accommodate an approximation error which allows a further reduction of the communication costs.
Resumo:
Many communication signal processing applications involve modelling and inverting complex-valued (CV) Hammerstein systems. We develops a new CV B-spline neural network approach for efficient identification of the CV Hammerstein system and effective inversion of the estimated CV Hammerstein model. Specifically, the CV nonlinear static function in the Hammerstein system is represented using the tensor product from two univariate B-spline neural networks. An efficient alternating least squares estimation method is adopted for identifying the CV linear dynamic model’s coefficients and the CV B-spline neural network’s weights, which yields the closed-form solutions for both the linear dynamic model’s coefficients and the B-spline neural network’s weights, and this estimation process is guaranteed to converge very fast to a unique minimum solution. Furthermore, an accurate inversion of the CV Hammerstein system can readily be obtained using the estimated model. In particular, the inversion of the CV nonlinear static function in the Hammerstein system can be calculated effectively using a Gaussian-Newton algorithm, which naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. The effectiveness of our approach is demonstrated using the application to equalisation of Hammerstein channels.
Resumo:
Rationale: Animal studies indicate that dopamine pathways in the ventral striatum code for the motivational salience of both rewarding and aversive stimuli, but evidence for this mechanism in humans is less established. We have developed a functional magnetic resonance imaging (fMRI) model which permits examination of the neural processing of both rewarding and aversive stimuli. Objectives: The aim of the study was to determine the effect of the dopamine receptor antagonist, sulpiride, on the neural processing of rewarding and aversive stimuli in healthy volunteers. Methods: We studied 30 healthy participants who were randomly allocated to receive a single dose of sulpiride (400 mg) or placebo, in a double-blind, parallel-group design. We used fMRI to measure the neural response to rewarding (taste or sight of chocolate) and aversive stimuli (sight of mouldy strawberries or unpleasant strawberry taste) 4 h after drug treatment. Results: Relative to placebo, sulpiride reduced blood oxygenation level-dependent responses to chocolate stimuli in the striatum (ventral striatum) and anterior cingulate cortex. Sulpiride also reduced lateral orbitofrontal cortex and insula activations to the taste and sight of the aversive condition. Conclusions: These results suggest that acute dopamine receptor blockade modulates mesolimbic and mesocortical neural activations in response to both rewarding and aversive stimuli in healthy volunteers. This effect may be relevant to the effects of dopamine receptor antagonists in the treatment of psychosis and may also have implications for the possible antidepressant properties of sulpiride.
Resumo:
Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.