999 resultados para pCO2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and d11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater [B(OH)4]?/[HCO3]? with a roughly constant partition coefficient (KD =([B/Ca]of CaCO3)/([B(OH)4]-/[HCO3]-)of seawater) of 1.48 ± 0.15 * 10**-3 (2sigma), and d11B in this species is offset below d11B of the borate in seawater by 3.38 ± 0.71 per mil (2sigma). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 * 10**-3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10-50 ppmv during 19-10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution d11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas composition and hydrochemistry of bottom waters of the Bay of Plenty in the hydrothermally active zone of the Pacific island arc are investigated. Methane content in underwater vents is an order of magnitude greater than that in volcanic exhalations on the land. Salinity, pH, total content of CO2, its partial pressure, and silica content also differ. Correlations between gas parameters, hydrochemical parameters, and biological and microbiological parameters are identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (epsilon p) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon p, derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 (c e) based on a new, site-specific calibration of the relationship between epsilon p and c e. The calibration was based on reassessment of existing epsilon p versus c e data, which support a physiologically based model in which epsilon p is inversely related to c e. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK 37. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon p and 1/c e. These are discussed in detail and it is concluded that the observed record of epsilon p most probably reflects significant variations in Delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 µatm during glacial intervals (ocean > atmosphere) to ~60 µatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of Delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidized intervals of five organic-rich Madeira Abyssal Plain (MAP) turbidites deposited during the Miocene, Pliocene, and Pleistocene all displayed comparable major loss of total organic carbon (TOC) (84 ± 3.1%) accompanied by a negative isotopic (d13C) shift ranging from -0.3 to -2.9 per mil. Major but significantly lower loss of total nitrogen (Ntot, 61 ± 7.1%) also occurred, leading to a decrease in TOC relative to Ntot (C/Ntot) and a +1.3 to 2.7 per mil Ntot isotopic (d15N) shift. Compound specific isotopic measurements on plant wax n-alkanes indicate the terrestrial organic component in the unoxidized deposits is 13C-enriched owing to significant C4 contribution. Selective preservation of terrestrial relative to marine organic carbon could account for the d13C behavior of TOC upon oxidation but only if a 13C-depleted component of the bulk terrestrial signal is selectively preserved in the process. Although the C/Ntot decrease and positive d15N shift seems inconsistent with selective terrestrial organic preservation, results from analysis of a Modern eolian dust sample collected in the vicinity indicate these observations are compatible. Regardless of the specific explanation for these isotopic observations, however, our findings provide evidence that paleoreconstruction of properties such as pCO2 using the d13C of TOC is a goal fraught with uncertainty whether or not the marine sedimentary record considered is 'contaminated' with significant terrestrial input. Nonetheless, despite major and selective loss of both marine and terrestrial components as a consequence of postdepositional oxidation, intensive organic geochemical proxies such as the alkenone unsaturation index, UK'37, appear resistant to change and thereby retain their paleoceanographic promise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the link between organic matter degradation, anaerobic methane oxidation (AMO), and sulfate depletion and explore how these processes potentially influence dolomitization. We determined rates and depths of AMO and dolomite formation for a variety of organic-rich sites along the west African Margin using data from Ocean Drilling Program (ODP) Leg 175. Rates of AMO are calculated from the diffusive fluxes of CH4 and SO4, and rates of dolomite formation are calculated from the diffusive flux of Mg. We find that the rates of dolomite formation are relatively constant regardless of the depth at which it is forming, indicating that the diffusive fluxes of Mg and Ca are not limiting. Based upon the calculated log IAP values, log K(sp) values for dolomite were found to narrowly range between -16.1 and -16.4. Dolomite formation is controlled in part by competition between AMO and methanogenesis, which controls the speciation of dissolved CO2. AMO increases the concentration of CO3[2-] through sulfate reduction, favoring dolomite formation, while methanogenesis increases the pCO2 of the pore waters, inhibiting dolomite formation. By regulating the pCO2 and alkalinity, methanogenesis and AMO can regulate the formation of dolomite in organic-rich marine sediments. In addition to providing a mechanistic link between AMO and dolomite formation, our findings provide a method by which the stability constant of dolomite can be calculated in modern sediments and allow prediction of regions and depth domains in which dolomite may be forming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased seawater pCO2, and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO2 gradient at Vulcano, Italy. Both gross photosynthesis (PG) and respiration (R) increased with pCO2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO2 stimulation) of metabolism. The increase of PG outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO2, which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO2. Understanding how CO2-enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ~1 per mil between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ~1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ~0.6 per mil. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of the JGOFS field program, extensive CO2 partial-pressure measurements were made in the atmosphere and in the surface waters of the equatorial Pacific from 1992 to 1999. For the first time, we are able to determine how processes occurring in the western portion of the equatorial Pacific impact the sea-air fluxes of CO2 in the central and eastern regions. These 8 years of data are compared with the decade of the 1980s. Over this period, surface-water pCO2 data indicate significant seasonal and interannual variations. The largest decreases in fluxes were associated with the 1991-94 and 1997-98 El Niño events. The lower sea-air CO2 fluxes during these two El Niño periods were the result of the combined effects of interconnected large-scale and locally forced physical processes: (1) development of a low-salinity surface cap as part of the formation of the warm pool in the western and central equatorial Pacific, (2) deepening of the thermocline by propagating Kelvin waves in the eastern Pacific, and (3) the weakening of the winds in the eastern half of the basin. These processes serve to reduce pCO2 values in the central and eastern equatorial Pacific towards near-equilibrium values at the height of the warm phase of ENSO. In the western equatorial Pacific there is a small but significant increase in seawater pCO2 during strong El Niño events (i.e., 1982-83 and 1997-98) and little or no change during weak El Niño events (1991-94). The net effect of these interannual variations is a lower-than-normal CO2 flux to the atmosphere from the equatorial Pacific during El Niño. The annual average fluxes indicate that during strong El Niños the release to the atmosphere is 0.2-0.4 Pg C/yr compared to 0.8-1.0 Pg C/yr during non-El Niño years.